A phosphorelay system controls stalk biogenesis during cell cycle progression in Caulobacter crescentus

Authors


E-mail laub@cgr.harvard.edu; Tel. (+1) 617 384 9647; Fax (+1) 617 495 2196.

Summary

A fundamental question in developmental biology is how morphogenesis is coordinated with cell cycle progression. In Caulobacter crescentus, each cell cycle produces morphologically distinct daughter cells, a stalked cell and a flagellated swarmer cell. Construction of both the flagellum and stalk requires the alternative sigma factor RpoN (σ54). Here we report that a σ54-dependent activator, TacA, is required for cell cycle regulated stalk biogenesis by collaborating with RpoN to activate gene expression. We have also identified the first histidine phosphotransferase in C. crescentus, ShpA, and show that it too is required for stalk biogenesis. Using a systematic biochemical technique called phosphotransfer profiling we have identified a multicomponent phosphorelay which leads from the hybrid histidine kinase ShkA to ShpA and finally to TacA. This pathway functions in vivo to phosphorylate and hence, activate TacA. Finally, whole genome microarrays were used to identify candidate members of the TacA regulon, and we show that at least one target gene, staR, regulates stalk length. This is the first example of a general method for identifying the connectivity of a phosphorelay and can be applied to any organism with two-component signal transduction systems.

Ancillary