SEARCH

SEARCH BY CITATION

References

  • Beard, W.A., Wilson, S.H. (2003) Structural insights into the origins of DNA polymerase fidelity. Structure 11: 489496.
  • Beard, W.A., Shock, D.D., Vande Berg, B.J., Wilson, S.H. (2002) Efficiency of correct nucleotide insertion governs DNA polymerase fidelity. J Biol Chem 277: 4739347398.
  • Bebenek, K., Kunkel, T.A. (1990) Frameshift errors initiated by nucleotide misincorporation. Proc Natl Acad Sci USA 87: 49464950.
  • Blinkova, A., Hervas, C., Stukenberg, P.T., Onrust, R., O'Donnell, M., Walker, J.R. (1993) The Escherichia coli DNA polymerase III holoenzyme contains both products of the dnaX gene, τ and γ, but only τ is essential. J Bacteriol 175: 60186027.
  • Blinkowa, A.L., Walker, J.R. (1990) Programmed ribosomal frameshifting generates the Escherichia coli DNA polymerase III γ subunit from within the τ subunit reading frame. Nucleic Acids Res 18: 17251729.
  • Bloom, L.B., Chen, X., Fygenson, D.K., Turner, J., O'Donnell, M., Goodman, M.F. (1997) Fidelity of Escherichia coli DNA polymerase III holoenzyme. The effects of β, γ complex processivity proteins and ɛ proofreading exonuclease on nucleotide misincorporation efficiencies. J Biol Chem 272: 2791927930.
  • Creighton, S., Goodman, M.F. (1995) Gel kinetic analysis of DNA polymerase fidelity in the presence of proofreading using bacteriophage T4 DNA polymerase. J Biol Chem 270: 47594774.
  • Cupples, C., Miller, J.H. (1989) A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc Natl Acad Sci USA 86: 53455349.
  • Dallmann, H.G., McHenry, C.S. (1995) DnaX complex of Escherichia coli DNA polymerase III holoenzyme. Physical characterization of the DnaX subunits and complexes. J Biol Chem 270: 2956329569.
  • Dallmann, H.G., Kim, S., Pritchard, A.E., Marians, K.J., McHenry, C.S. (2000) Characterization of the unique C terminus of the Escherichia coliτ DnaX protein. Monomeric C-τ binds α and DnaB and can partially replace τ in reconstituted replication forks. J Biol Chem 275: 1551215519.
  • Fijalkowska, I.J., Schaaper, R.M. (1995) Effects of Escherichia coli dnaE antimutator alleles in a proofreading-deficient mutD5 strain. J Bacteriol 177: 59795986.
  • Fijalkowska, I.J., Schaaper, R.M. (1996) Mutants in the Exo I motif of Escherichia coli dnaQ: defective proofreading and inviability due to error catastrophe. Proc Natl Acad Sci USA 93: 28562861.
  • Fijalkowska, I.J., Dunn, R.L., Schaaper, R.M. (1997) Genetic requirements and mutational specificity of the Escherichia coli SOS mutator activity. J Bacteriol 179: 74357445.
  • Fijalkowska, I.J., Jonczyk, P., Tkaczyk, M.M., Bialoskorska, M., Schaaper, R.M. (1998) Unequal fidelity of leading strand and lagging strand DNA replication on the Escherichia coli chromosome. Proc Natl Acad Sci USA 95: 1002010025.
  • Flower, A.M., McHenry, C.S. (1986) The adjacent dnaZ and dnaX genes of Escherichia coli are contained within one continuous open reading frame. Nucleic Acids Res 14: 80918101.
  • Flower, A.M., McHenry, C.S. (1990) The γ subunit of DNA polymerase III holoenzyme of Escherichia coli is produced by ribosomal frameshifting. Proc Natl Acad Sci USA 87: 37133717.
  • Gao, D., McHenry, C.S. (2001) τ binds and organizes Escherichia coli replication proteins through distinct domains. Partial proteolysis of terminally tagged τ to determine candidate domains and to assign domain V as the α binding domain. J Biol Chem 276: 44334440.
  • Garibyan, L., Huang, T., Kim, M., Wolff, E., Nguyen, A., Nguyen, T., et al. (2003) Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome. DNA Repair 2: 593608.
  • Guerola, N., Ingraham, J.L., Cerda-Olmedo, E. (1971) Induction of closely linked multiple mutations by nitrosoguanidine. Nat New Biol 230: 122125.
  • Henson, J.M., Chu, H., Irwin, C.A., Walker, J.R. (1979) Isolation and characterization of dnaX and dnaY temperature-sensitive mutants of Escherichia coli. Genetics 92: 10411059.
  • Johnson, K.A. (1993) Conformational coupling in DNA polymerase fidelity. Annu Rev Biochem 62: 685713.
  • Joyce, C.M., Sun, X.C., Grindley, N.D.F. (1992) Reactions at the polymerase active site that contribute to the fidelity of Escherichia coli DNA polymerase I (Klenow fragment). J Biol Chem 267: 2448524500.
  • Kelman, Z., O'Donnell, M. (1995) DNA polymerase III holoenzyme: structure and function of a chromosomal replicating machine. Annu Rev Biochem 64: 171200.
  • Kim, D.R., McHenry, C.S. (1996a) Biotin tagging deletion analysis of domain limits involved in protein–macromolecular interactions. Mapping the τ binding domain of the DNA polymerase III α subunit. J Biol Chem 271: 2069020698.
  • Kim, D.R., McHenry, C.S. (1996b) In vivo assembly of overproduced DNA polymerase III. Overproduction, purification, and characterization of the α, α-ɛ, and α-ɛ-θ subunits. J Biol Chem 271: 2068120689.
  • Kim, S., Dallmann, H.G., McHenry, C.S., Marians, K.J. (1996) τ couples the leading- and lagging-strand polymerases at the Escherichia coli DNA replication fork. J Biol Chem 271: 2140621412.
  • Kleckner, N., Bender, J., Gottesman, S. (1991) Uses of transposons with emphasis on Tn10. Methods Enzymol 204: 139180.
  • Kodaira, M., Biswas, S.B., Kornberg, A. (1983) The dnaX gene encodes the DNA polymerase III holoenzyme τ subunit, precursor of the γ subunit, the dnaZ gene product. Mol Gen Genet 192: 8086.
  • Kohara, Y., Akiyama, K., Isono, K. (1987) The physical map of the whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50: 495508.
  • Kong, X.-P., Onrust, R., O'Donnell, M., Kuriyan, J. (1992) Three-dimensional structure of the β subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 69: 425437.
  • Leu, F.P., Georgescu, R., O'Donnell, M. (2003) Mechanism of the E. coliτ processivity switch during lagging-strand synthesis. Mol Cell 11: 315327.
  • Ling, H., Boudsocq, F., Woodgate, R., Yang, W. (2001) Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell 197: 91102.
  • López de Saro, F.J., Georgescu, R.E., Goodman, M.F., O'Donnell, M. (2003a) Competitive processivity-clamp usage by DNA polymerases during DNA replication and repair. EMBO J 22: 64086418.
  • López de Saro, F.J., Georgescu, R.E., O'Donnell, M. (2003b) A peptide switch regulates DNA polymerase processivity. Proc Natl Acad Sci USA 100: 1468914694.
  • McHenry, C.S. (1982) Purification and characterization of DNA polymerase III′. Identification of τ as a subunit of the DNA polymerase III holoenzyme. J Biol Chem 257: 26572663.
  • McHenry, C.S. (2003) Chromosomal replicases as asymmetric dimers: studies of subunit arrangement and functional consequences. Mol Microbiol 49: 11571165.
  • McInerney, P., O'Donnell, M. (2004) Functional uncoupling of twin polymerases. Mechanism of polymerase dissociation from a lagging-strand block. J Biol Chem 279: 2154321551.
  • Mendelman, L.V., Petruska, J., Goodman, M.F. (1990) Base mispair extension kinetics. Comparison of DNA polymerase alpha and reverse transcriptase. J Biol Chem 265: 23382346.
  • Miller, J.H. (1992) A Short Course in Bacterial Genetics. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.
  • Miller, J.H. (1996) Spontaneous mutators in bacteria: insights into pathways of mutagenesis and repair. Annu Rev Microbiol 50: 625643.
  • Mo, J.-Y., Schaaper, R.M. (1996) Fidelity and error specificity of the α catalytic subunit of Escherichia coli DNA polymerase III. J Biol Chem 271: 1894718953.
  • Modrich, P. (1991) Mechanisms and biological effects of mismatch repair. Annu Rev Genet 25: 229253.
  • Mullin, D.A., Woldringh, C.L., Henson, J.M., Walker, J.R. (1983) Cloning of the Escherichia coli dnaZX region and identification of its products. Mol Gen Genet 192: 7379.
  • Nakano, Y., Yoshida, Y., Yamashita, Y., Koga, T. (1995) Construction of a series of pACYC-derived plasmid vectors. Gene 162: 157158.
  • Naktinis, V., Turner, J., O'Donnell, M. (1996) A molecular switch in a replication machine defined by an internal competition for protein rings. Cell 84: 137145.
  • Nghiem, Y., Cabrera, M., Cupples, C.G., Miller, J.H. (1988) The mutY gene: a mutator locus in Escherichia coli that generates G·C[RIGHTWARDS ARROW]T·A transversions. Proc Natl Acad Sci USA 85: 27092713.
  • Onrust, R., Finkelstein, J., Naktinis, V., Turner, J., Fang, L., O'Donnell, M. (1995) Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. I. Organization of the clamp loader. J Biol Chem 270: 1334813357.
  • Perrino, F.W., Loeb, L.A. (1989) Differential extension of 3′ mispairs is a major contribution to the high fidelity of calf thymus DNA polymerase-alpha. J Biol Chem 264: 28982905.
  • Pham, P.T., Olson, M.W., McHenry, C.S., Schaaper, R.M. (1998) The base substitution and frameshift fidelity of Escherichia coli DNA polymerase III holoenzyme in vitro. J Biol Chem 273: 2357523584.
  • Pham, P.T., Olson, M.W., McHenry, C.S., Schaaper, R.M. (1999) Mismatch extension by Escherichia coli DNA polymerase III holoenzyme. J Biol Chem 274: 37053710.
  • Rangarajan, S., Gudmundsson, G., Qiu, Z., Foster, P.L., Goodman, M.F. (1997) Escherichia coli DNA polymerase II catalyzes chromosomal and episomal DNA synthesis in vivo. Proc Natl Acad Sci USA 94: 946951.
  • Schaaper, R.M. (1988) Mechanism of mutagenesis in the Escherichia coli mutator mutD5: role of DNA mismatch repair. Proc Natl Acad Sci USA 85: 81268130.
  • Schaaper, R.M. (1993a) Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli. J Biol Chem 268: 2376223765.
  • Schaaper, R.M. (1993b) The mutational specificity of two Escherichia coli dnaE antimutator alleles as determined from lacI mutation spectra. Genetics 134: 10311038.
  • Schaaper, R.M., Dunn, R.L. (1991) Spontaneous mutation in the Escherichia coli lacI gene. Genetics 129: 317326.
  • Schaaper, R.M., Danforth, B.N., Glickman, B.W. (1985) Rapid repeated cloning of mutant lac repressor genes. Gene 39: 181189.
  • Siegel, E.C., Vaccaro, K.K. (1978) The reversion of trp frameshift mutations in mut, polA, lig, and dnaE mutant strains of Escherichia coli. Mutat Res 50: 917.
  • Siegel, E.C., Wain, S.L., Meltzer, S.F., Binion, M.L., Steinberg, J.L. (1982) Mutator mutations in Escherichia coli induced by the insertion of phage mu and the transposable resistance elements Tn5 and Tn10. Mutat Res 93: 2533.
  • Singer, M., Baker, T.A., Schnitzler, G., Deischel, S.M., Goel, M., Dove, M., et al. (1989) A collection of strains containing genetically linked alternating antibiotic resistance elements for genetic mapping of Escherichia coli. Microbiol Rev 53: 124.
  • Studwell-Vaughan, P.S., O'Donnell, M. (1993) DNA polymerase III accessory proteins: θ encoded by holE. J Biol Chem 268: 178511791.
  • Stukenberg, P.T., O'Donnell, M. (1995) Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. V. Four different polymerase-clamp complexes on DNA. J Biol Chem 270: 1338413391.
  • Taft-Benz, S.A., Schaaper, R.M. (2004) The θ subunit of Escherichia coli DNA Polymerase III: a role in stabilizing the ɛ proofreading subunit. J Bacteriol 186: 27742780/.
  • Tsuchihashi, Z., Kornberg, A. (1990) Translational frameshifting generates the γ subunit of DNA polymerase III holoenzyme. Proc Natl Acad Sci USA 87: 25162520.
  • Wagner, J., Etienne, H., Janel-Bintz, R., Fuchs, R.P.P. (2002) Genetics of mutagenesis in E. coli: various combinations of translesion polymerases (Pol II, IV and V) deal with lesion/sequence context diversity. DNA Repair 1: 159167.
  • Yin, K.-C., Blinkowa, A., Walker, J.R. (1986) Nucleotide sequence of the Escherichia coli replication gene dnaZX. Nucleic Acids Res 14: 65416549.