SEARCH

SEARCH BY CITATION

References

  • Bonelli, R.R., Schneider, T., Sahl, H.G., and Wiedemann, I. (2006) Insights into in vivo activities of lantibiotics from gallidermin and epidermin mode of action studies. Antimicrob Agents Chemother 50: 14491457.
  • Bonev, B.B., Breukink, E., Swiezewska, E., De Kruijff, B., and Watts, A. (2004) Targeting extracellular pyrophosphates underpins the high selectivity of nisin. FASEB J 18: 18621869.
  • Breukink, E., Wiedemann, I., Van Kraaij, C., Kuipers, O.P., Sahl, H., and De Kruijff, B. (1999) Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286: 23612364.
  • Brötz, H., Bierbaum, G., Reynolds, P.E., and Sahl, H.G. (1997) The lantibiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation. Eur J Biochem 246: 193199.
  • Brötz, H., Josten, M., Wiedemann, I., Schneider, U., Gotz, F., Bierbaum, G., and Sahl, H.G. (1998) Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol Microbiol 30: 317327.
  • Cotter, P.D., O'connor, P.M., Draper, L.A., Lawton, E.M., Deegan, L.H., Hill, C., and Ross, R.P. (2005) Posttranslational conversion of 1-serines to d-alanines is vital for optimal production and activity of the lantibiotic lacticin 3147. Proc Natl Acad Sci USA 102: 1858418589.
  • Garneau, S., Martin, N.I., and Vederas, J.C. (2002) Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie 84: 577592.
  • Gilmore, M.S., Segarra, R.A., Booth, M.C., Bogie, C.P., Hall, L.R., and Clewell, D.B. (1994) Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to lantibiotic determinants. J Bacteriol 176: 73357344.
  • Gross, E., and Morell, J.L. (1971) The structure of nisin. J Am Chem Soc 93: 46344635.
  • Hasper, H.E., De Kruijff, B., and Breukink, E. (2004) Assembly and stability of nisin-lipid II pores. Biochemistry 43: 1156711575.
  • Hechard, Y., and Sahl, H.G. (2002) Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie 84: 545557.
  • Holo, H., Jeknic, Z., Daeschel, M., Stevanovic, S., and Nes, I.F. (2001) Plantaricin W from Lactobacillus plantarum belongs to a new family of two-peptide lantibiotics. Microbiology 147: 643651.
  • Hsu, S.T., Breukink, E., Bierbaum, G., Sahl, H.G., De Kruijff, B., Kaptein, R., et al. (2003) NMR study of mersacidin and lipid II interaction in dodecylphosphocholine micelles. Conformational changes are a key to antimicrobial activity. J Biol Chem 278: 1311013117.
  • Hsu, S.T., Breukink, E., Tischenko, E., Lutters, M.A., De Kruijff, B., Kaptein, R., et al. (2004) The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat Struct Mol Biol 11: 963967.
  • Klaenhammer, T.R. (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12: 3985.
  • McAuliffe, O., Ryan, M.P., Ross, R.P., Hill, C., Breeuwer, P., and Abee, T. (1998) Lacticin 3147, a broad-spectrum bacteriocin which selectively dissipates the membrane potential. Appl Environ Microbiol 64: 439445.
  • Martin, N.I., Sprules, T., Carpenter, M.R., Cotter, P.D., Hill, C., Ross, R.P., and Vederas, J.C. (2004) Structural characterization of lacticin 3147, a two-peptide lantibiotic with synergistic activity. Biochemistry 43: 30493056.
  • Mayer, L.D., Hope, M.J., and Cullis, P.R. (1986) Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta 858: 161168.
  • Montal, M., and Mueller, P. (1972) Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci USA 69: 35613566.
  • Morgan, S.M., O'connor, P.M., Cotter, P.D., Ross, R.P., and Hill, C. (2005) Sequential actions of the two component peptides of the lantibiotic lacticin 3147 explain its antimicrobial activity at nanomolar concentrations. Antimicrob Agents Chemother 49: 26062611.
  • Navaratna, M.A., Sahl, H.G., and Tagg, J.R. (1998) Two-component anti-Staphylococcus aureus lantibiotic activity produced by Staphylococcus aureus C55. Appl Environ Microbiol 64: 48034808.
  • Nes, I.F., and Tagg, J.R. (1996) Novel lantibiotics and their pre-peptides. Antonie Van Leeuwenhoek 69: 8997.
  • Nissen-Meyer, J., and Nes, I.F. (1997) Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Arch Microbiol 167: 6777.
  • Orlov, D.S., Nguyen, T., and Lehrer, R.I. (2002) Potassium release, a useful tool for studying antimicrobial peptides. J Microbiol Methods 49: 325328.
  • Reisinger, P., Seidel, H., Tschesche, H., and Hammes, W.P. (1980) The effect of nisin on murein synthesis. Arch Microbiol 127: 187193.
  • Rick, P.D., Hubbard, G.L., Kitaoka, M., Nagaki, H., Kinoshita, T., Dowd, S., et al. (1998) Characterization of the lipid-carrier involved in the synthesis of enterobacterial common antigen (ECA) and identification of a novel phosphoglyceride in a mutant of Salmonella typhimurium defective in ECA synthesis. Glycobiology 8: 557567.
  • Ruhr, E., and Sahl, H.G. (1985) Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles. Antimicrob Agents Chemother 27: 841845.
  • Ryan, M.P., Rea, M.C., Hill, C., and Ross, R.P. (1996) An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Appl Environ Microbiol 62: 612619.
  • Sahl, H.G., Jack, R.W., and Bierbaum, G. (1995) Biosynthesis and biological activities of lantibiotics with unique post-translational modifications. Eur J Biochem 230: 827853.
    Direct Link:
  • Schneider, T., Senn, M.M., Berger-Bachi, B., Tossi, A., Sahl, H.G., and Wiedemann, I. (2004) In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II-Gly5) of Staphylococcus aureus. Mol Microbiol 53: 675685.
  • Surewicz, W.K., and Epand, R.M. (1984) Role of peptide structure in lipid–peptide interactions: a fluorescence study of the binding of pentagastrin-related pentapeptides to phospholipid vesicles. Biochemistry 25: 60726077.
  • Szekat, C., Jack, R.W., Skutlarek, D., Farber, H., and Bierbaum, G. (2003) Construction of an expression system for site-directed mutagenesis of the lantibiotic mersacidin. Appl Environ Microbiol 69: 37773783.
  • Wiedemann, I., Breukink, E., Van Kraaij, C., Kuipers, O.P., Bierbaum, G., De Kruijff, B., and Sahl, H.G. (2001) Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem 276: 17721779.
  • Wiedemann, I., Benz, R., and Sahl, H.G. (2004) Lipid II-mediated pore formation by the peptide antibiotic nisin: a black lipid membrane study. J Bacteriol 186: 32593261.
  • Wiedemann, I., Bottiger, T., Bonelli, R.R., Schneider, T., Sahl, H.G., and Martinez, B. (2006) Lipid II-based antimicrobial activity of the lantibiotic plantaricin C. Appl Environ Microbiol 72: 28092814.
  • Wiese, A., and Seydel, U. (1999) Electrophysiological measurements on reconstituted outer membranes. Methods Mol Biol 145: 355370.
  • Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms. Nature 415: 389395.