SEARCH

SEARCH BY CITATION

References

  • Andrews, S.C., Robinson, A.K., and Rodriguez-Quinones, F. (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27: 215237.
  • Annamalai, R., Jin, B., Cao, Z., Newton, S.M., and Klebba, P.E. (2004) Recognition of ferric catecholates by FepA. J Bacteriol 186: 35783589.
  • Arceneaux, J.E., and Byers, B.R. (1980) Ferrisiderophore reductase activity in Bacillus megaterium. J Bacteriol 141: 715721.
  • Baichoo, N., Wang, T., Ye, R., and Helmann, J.D. (2002) Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol Microbiol 45: 16131629.
  • Benson, A.K., and Haldenwang, W.G. (1993) Regulation of sigma B levels and activity in Bacillus subtilis. J Bacteriol 175: 23472356.
  • Bister, B., Bischoff, D., Nicholson, G.J., Valdebenito, M., Schneider, K., Winkelmann, G., et al. (2004) The structure of salmochelins: C-glucosylated enterobactins of Salmonella enterica. Biometals 17: 471481.
  • Bleuel, C., Grosse, C., Taudte, N., Scherer, J., Wesenberg, D., Krauss, G.J., et al. (2005) TolC is involved in enterobactin efflux across the outer membrane of Escherichia coli. J Bacteriol 187: 67016707.
  • Bluhm, M.E., Kim, S.S., Dertz, E.A., and Raymond, K.N. (2002) Corynebactin and enterobactin: related siderophores of opposite chirality. J Am Chem Soc 124: 24362437.
  • Brickman, T.J., and McIntosh, M.A. (1992) Overexpression and purification of ferric enterobactin esterase from Escherichia coli. Demonstration of enzymatic hydrolysis of enterobactin and its iron complex. J Biol Chem 267: 1235012355.
  • Buchanan, S.K., Smith, B.S., Venkatramani, L., Xia, D., Esser, L., Palnitkar, M., et al. (1999) Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat Struct Biol 6: 5663.
  • Challis, G.L. (2005) A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. Chembiochem 6: 601611.
  • Chenault, S.S., and Earhart, C.F. (1991) Organization of genes encoding membrane proteins of the Escherichia coli ferrienterobactin permease. Mol Microbiol 5: 14051413.
  • Cooper, D.G., Macdonald, C.R., Duff, S.J., and Kosaric, N. (1981) Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 42: 408412.
  • Crosa, J.H., and Walsh, C.T. (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66: 223249.
  • Dertz, E.A., Xu, J., Stintzi, A., and Raymond, K.N. (2006) Bacillibactin-mediated iron transport in Bacillus subtilis. J Am Chem Soc 128: 2223.
  • Elkins, M.F., and Earhart, C.F. (1989) Nucleotide sequence and regulation of the Escherichia coli gene for ferrienterobactin transport protein FepB. J Bacteriol 171: 54435451.
  • Eppelmann, K., Doekel, S., and Marahiel, M.A. (2001) Engineered biosynthesis of the peptide antibiotic bacitracin in the surrogate host Bacillus subtilis. J Biol Chem 276: 3482434831.
  • Fetherston, J.D., Bertolino, V.J., and Perry, R.D. (1999) YbtP and YbtQ: two ABC transporters required for iron uptake in Yersinia pestis. Mol Microbiol 32: 289299.
  • Fischbach, M.A., Lin, H., Liu, D.R., and Walsh, C.T. (2005) In vitro characterization of IroB, a pathogen-associated C-glycosyltransferase. Proc Natl Acad Sci USA 102: 571576.
  • Fischbach, M.A., Lin, H., Liu, D.R., and Walsh, C.T. (2006) How pathogenic bacteria evade mammalian sabotage in the battle for iron. Nat Chem Biol 2: 132138.
  • Furrer, J.L., Sanders, D.N., Hook-Barnard, I.G., and McIntosh, M.A. (2002) Export of the siderophore enterobactin in Escherichia coli: involvement of a 43 kDa membrane exporter. Mol Microbiol 44: 12251234.
  • Gaines, C.G., Lodge, J.S., Arceneaux, J.E., and Byers, B.R. (1981) Ferrisiderophore reductase activity associated with an aromatic biosynthetic enzyme complex in Bacillus subtilis. J Bacteriol 148: 527533.
  • Gehring, A.M., Mori, I., and Walsh, C.T. (1998) Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF. Biochemistry 37: 26482659.
  • Gregory, M.A., Petkovic, H., Lill, R.E., Moss, S.J., Wilkinson, B., Gaisser, S., et al. (2005) Mutasynthesis of rapamycin analogues through the manipulation of a gene governing starter unit biosynthesis. Angew Chem Int Ed Engl 44: 47574760.
  • Grünewald, J., and Marahiel, M.A. (2006) Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides. Microbiol Mol Biol Rev 70: 121146.
  • Guerout-Fleury, A.M., Shazand, K., Frandsen, N., and Stragier, P. (1995) Antibiotic-resistance cassettes for Bacillus subtilis. Gene 167: 335336.
  • Hantke, K., Nicholson, G., Rabsch, W., and Winkelmann, G. (2003) Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. Proc Natl Acad Sci USA 100: 36773682.
  • Hoch, J.A. (1991) Genetic analysis in Bacillus subtilis. Meth Enzymol 204: 305320.
  • Hojati, Z., Milne, C., Harvey, B., Gordon, L., Borg, M., Flett, F., et al. (2002) Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor. Chem Biol 9: 11751187.
  • Jin, B., Newton, S.M., Shao, Y., Jiang, X., Charbit, A., and Klebba, P.E. (2006) Iron acquisition systems for ferric hydroxamates, haemin and haemoglobin in Listeria monocytogenes. Mol Microbiol 59: 11851198.
  • Klein, C., Kaletta, C., Schnell, N., and Entian, K.D. (1992) Analysis of genes involved in biosynthesis of the lantibiotic subtilin. Appl Environ Microbiol 58: 132142.
  • Kobayashi, K., Ehrlich, S.D., Albertini, A., Amati, G., Andersen, K.K., Arnaud, M., et al. (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci USA 100: 46784683.
  • Lin, H., Fischbach, M.A., Liu, D.R., and Walsh, C.T. (2005) In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes. J Am Chem Soc 127: 1107511084.
  • Lodge, J.S., Gaines, C.G., Arceneaux, J.E., and Byers, B.R. (1980) Non-hydrolytic release of iron from ferrienterobactin analogs by extracts of Bacillus subtilis. Biochem Biophys Res Commun 97: 12911295.
  • Mademidis, A., Killmann, H., Kraas, W., Flechsler, I., Jung, G., and Braun, V. (1997) ATP-dependent ferric hydroxamate transport system in Escherichia coli: periplasmic FhuD interacts with a periplasmic and with a transmembrane/cytoplasmic region of the integral membrane protein FhuB, as revealed by competitive peptide mapping. Mol Microbiol 26: 11091123.
  • Matzanke, B.F., Anemuller, S., Schunemann, V., Trautwein, A.X., and Hantke, K. (2004) FhuF, part of a siderophore-reductase system. Biochemistry 43: 13861392.
  • May, J.J., Wendrich, T.M., and Marahiel, M.A. (2001) The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J Biol Chem 276: 72097217.
  • May, J.J., Kessler, N., Marahiel, M.A., and Stubbs, M.T. (2002) Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases. Proc Natl Acad Sci USA 99: 1212012125.
  • Miethke, M., Bisseret, P., Beckering, C.L., Vignard, D., Eustache, J., and Marahiel, M.A. (2006) Inhibition of aryl acid adenylation domains involved in bacterial siderophore synthesis. FEBS J 273: 409419.
  • Newton, S.M., Igo, J.D., Scott, D.C., and Klebba, P.E. (1999) Effect of loop deletions on the binding and transport of ferric enterobactin by FepA. Mol Microbiol 32: 11531165.
  • O'Brien, I.G., Cox, G.B., and Gibson, F. (1971) Enterochelin hydrolysis and iron metabolism in Escherichia coli. Biochim Biophys Acta 237: 537549.
  • Ollinger, J., Song, K.-B., Antelmann, H., Hecker, M., and Helmann, J.D. (2006) Role of the Fur regulon in iron transport in Bacillus subtilis. J Bacteriol 188: 36643673.
  • Ratledge, C., and Dover, L.G. (2000) Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54: 881941.
  • Rodriguez, G.M., and Smith, I. (2006) Identification of an ABC transporter required for iron acquisition and virulence in Mycobacterium tuberculosis. J Bacteriol 188: 424430.
  • Rohrbach, M.R., Braun, V., and Köster, W. (1995) Ferrichrome transport in Escherichia coli K-12: altered substrate specificity of mutated periplasmic FhuD and interaction of FhuD with the integral membrane protein FhuB. J Bacteriol 177: 71867193.
  • Rowland, B.M., and Taber, H.W. (1996) Duplicate isochorismate synthase genes of Bacillus subtilis: regulation and involvement in the biosyntheses of menaquinone and 2,3-dihydroxybenzoate. J Bacteriol 178: 854861.
  • Rowland, B.M., Grossman, T.H., Osburne, M.S., and Taber, H.W. (1996) Sequence and genetic organization of a Bacillus subtilis operon encoding 2,3-dihydroxybenzoate biosynthetic enzymes. Gene 178: 119123.
  • Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • Schaible, U.E., and Kaufmann, S.H. (2004) Iron and microbial infection. Nat Rev Microbiol 2: 946953.
  • Schneider, R., and Hantke, K. (1993) Iron-hydroxamate uptake systems in Bacillus subtilis: identification of a lipoprotein as part of a binding protein-dependent transport system. Mol Microbiol 8: 111121.
  • Schröder, I., Johnson, E., and De Vries, S. (2003) Microbial ferric iron reductases. FEMS Microbiol Rev 27: 427447.
  • Schwyn, B., and Neilands, J.B. (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160: 4756.
  • Shea, C.M., and McIntosh, M.A. (1991) Nucleotide sequence and genetic organization of the ferric enterobactin transport system: homology to other periplasmic binding protein-dependent systems in Escherichia coli. Mol Microbiol 5: 14151428.
  • Sieber, S.A., and Marahiel, M.A. (2005) Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev 105: 715738.
  • Sprencel, C., Cao, Z., Qi, Z., Scott, D.C., Montague, M.A., Ivanoff, N., et al. (2000) Binding of ferric enterobactin by the Escherichia coli periplasmic protein FepB. J Bacteriol 182: 53595364.
  • Strahsburger, E., Baeza, M., Monasterio, O., and Lagos, R. (2005) Cooperative uptake of microcin E492 by receptors FepA, Fiu, and Cir and inhibition by the siderophore enterochelin and its dimeric and trimeric hydrolysis products. Antimicrob Agents Chemother 49: 30833086.
  • Stülke, J., Hanschke, R., and Hecker, M. (1993) Temporal activation of beta-glucanase synthesis in Bacillus subtilis is mediated by the GTP pool. J Gen Microbiol 139: 20412045.
  • Thomas, X., Destoumieux-Garzon, D., Peduzzi, J., Afonso, C., Blond, A., Birlirakis, N., et al. (2004) Siderophore peptide, a new type of post-translationally modified antibacterial peptide with potent activity. J Biol Chem 279: 2823328242.
  • Vagner, V., Dervyn, E., and Ehrlich, S.D. (1998) A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144: 30973104.
  • Wach, A. (1996) PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 12: 259265.
  • Wandersman, C., and Delepelaire, P. (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58: 611647.
  • Weist, S., Kittel, C., Bischoff, D., Bister, B., Pfeifer, V., Nicholson, G.J., et al. (2004) Mutasynthesis of glycopeptide antibiotics: variations of vancomycin's AB-ring amino acid 3,5-dihydroxyphenylglycine. J Am Chem Soc 126: 59425943.
  • Winkelmann, G., and Drechsel, H. (1997) Microbial Siderophores. In Products of Secondary Metabolism, Vol. 7. Kleinkauf, H., and Von Döhren, H. (eds). Weinheim, Germany: Wiley-VCH, pp. 200246.
  • Zhu, W., Arceneaux, J.E., Beggs, M.L., Byers, B.R., Eisenach, K.D., and Lundrigan, M.D. (1998) Exochelin genes in Mycobacterium smegmatis: identification of an ABC transporter and two non-ribosomal peptide synthetase genes. Mol Microbiol 29: 629639.
  • Zhu, M., Valdebenito, M., Winkelmann, G., and Hantke, K. (2005) Functions of the siderophore esterases IroD and IroE in iron-salmochelin utilization. Microbiology 151: 23632372.