SEARCH

SEARCH BY CITATION

References

  • Belland, R.J., Zhong, G., Crane, D.D., Hogan, D., Sturdevant, D., Sharma, J., et al. (2003) Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc Natl Acad Sci USA 100: 84788483.
  • Caldwell, H.D., Kromhout, J., and Schachter, J. (1981) Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun 31: 11611176.
  • Clausen, J.D., Christiansen, G., Holst, H.U., and Birkelund, S. (1997) Chlamydia trachomatis utilizes the host cell microtubule network during early events of infection. Mol Microbiol 25: 441449.
  • Clifton, D.R., Fields, K.A., Grieshaber, S.S., Dooley, C.A., Fischer, E.R., Mead, D.J., et al. (2004) A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. Proc Natl Acad Sci USA 101: 1016610171.
  • Coleman, S.A., Fischer, E.R., Howe, D., Mead, D.J., and Heinzen, R. (2004) Temporal analysis of Coxiella burnetii morphological differentiation. J Bacteriol 186: 73447352.
  • Douglas, A.L., and Hatch, T.P. (2000) Expression of the transcripts of the sigma factors and putative sigma factor regulators of Chlamydia trachomatis L2. Gene 247: 209214.
  • Ferracci, F., Schubot, F.D., Waugh, D.S., and Plano, G.V. (2005) Selection and characterization of Yersinia pestis YopN mutants that constitutively block Yop secretion. Mol Microbiol 57: 970987.
  • Fields, K.A., and Hackstadt, T. (2000) Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism. Mol Microbiol 38: 10481060.
  • Fields, K.A., and Hackstadt, T. (2002) The chlamydial inclusion: escape from the endocytic pathway. Annu Rev Cell Dev Biol 14: 14.
  • Fields, K.A., Mead, D.J., Dooley, C.A., and Hackstadt, T. (2003) Chlamydia trachomatis type III secretion: evidence for a functional apparatus during early-cycle development. Mol Microbiol 48: 671683.
  • Fields, K.A., Fischer, E.R., Mead, D.J., and Hackstadt, T. (2005) Analysis of putative Chlamydia trachomatis chaperones Scc2 and Scc3 and their use in the identification of type III secretion substrates. J Bacteriol 187: 64666478.
  • Furness, G., Graham, D.M., and Reeve, P. (1960) The titration of trachoma and inclusion blennorrhoea viruses in cell cultures. J Gen Microbiol 23: 613619.
  • Grieshaber, S.S., Grieshaber, N.A., and Hackstadt, T. (2003) Chlamydia trachomatis uses host cell dynein to traffic to the microtubule-organizing center in a p50 dynamitin-independent process. J Cell Sci 116: 37933802.
  • Grieshaber, N.A., Fischer, E.R., Mead, D.J., Dooley, C.A., and Hackstadt, T. (2004) Chlamydial histone–DNA interactions are disrupted by a metabolite in the methylerythritol phosphate pathway of isoprenoid biosynthesis. Proc Natl Acad Sci USA 101: 74517456.
  • Grieshaber, N.A., Grieshaber, S.S., Fischer, E.R., and Hackstadt, T. (2006) A small RNA inhibits translation of the histone-like protein Hc1 in Chlamydia trachomatis. Mol Microbiol 59: 541550.
  • Hackstadt, T. (1998) The diverse habitats of obligate intracellular parasites. Curr Opin Microbiol 1: 8287.
  • Hackstadt, T., Scidmore, M.A., and Rockey, D.D. (1995) Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proc Natl Acad Sci USA 92: 48774881.
  • Hackstadt, T., Rockey, D.D., Heinzen, R.A., and Scidmore, M.A. (1996) Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J 15: 964977.
  • Hackstadt, T., Scidmore-Carlson, M., Shaw, E., and Fischer, E. (1999) The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion. Cell Microbiol 1: 119130.
  • Heinzen, R.A., Scidmore, M.A., Rockey, D.D., and Hackstadt, T. (1996) Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis. Infect Immun 64: 796809.
  • Heuer, D., Brinkmann, V., Meyer, T.F., and Szczepek, A.J. (2003) Expression and translocation of chlamydial protease during acute and persistent infection of the epithelial HEp-2 cells with Chlamydophila (Chlamydia) pneumoniae. Cell Microbiol 5: 315322.
  • Hilbert, D.W., and Piggot, P.J. (2004) Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol Mol Biol Rev 68: 234262.
  • Hogan, R.J., Mathews, S.A., Mukhopadhyay, S., Summersgill, J.T., and Timms, P. (2004) Chlamydial persistence: beyond the biphasic paradigm. Infect Immun 72: 18431855.
  • Hsia, R.C., Pannekoek, Y., Ingerowski, E., and Bavoil, P.M. (1997) Type III secretion genes identify a putative virulence locus of Chlamydia. Mol Microbiol 25: 351359.
  • Hua, L., Hefty, P.S., Lee, Y.L., Lee, Y.M., Stephens, R.S., and Price, C.W. (2006) Core of the partner switching signalling mechanism is conserved in the obligate intracellular pathogen Chlamydia trachomatis. Mol Microbiol 59: 623636.
  • Hueck, C.J. (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62: 379433.
  • Kauppi, A.M., Nordfelth, R., Uvell, H., Wolf-Watz, H., and Elofsson, M. (2003) Targeting bacterial virulence: inhibitors of type III secretion in Yersinia. Chem Biol 10: 241249.
  • Koo, I.C., and Stephens, R.S. (2003) A developmentally regulated two-component signal transduction system in Chlamydia. J Biol Chem 278: 1731417319.
  • Kozak, N.A., Mattoo, S., Foreman-Wykert, A.K., Whitelegge, J.P., and Miller, J. (2005) Interactions between partner switcher orthologs BtrW and BtrV regulate type III secretion in Bordetella. J Bacteriol 187: 56655676.
  • Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680685.
  • Lu, H., Shen, C., and Brunham, R.C. (2000) Chlamydia trachomatis infection of epithelial cells induces the activation of caspase-1 and release of mature IL-18. J Immunol 165: 14631469.
  • Matsumoto, A. (1981) Electron microscopic observations of surface projections and related intracellular structures of Chlamydia organisms. J Electron Microsc (Tokyo) 30: 315320.
  • Mattoo, S., Yuk, M.H., Huang, L., and Miller, J. (2004) Regulation of type III secretion in Bordetella. Mol Microbiol 52: 12011214.
  • Moulder, J.W. (1991) Interaction of chlamydiae and host cells in vitro. Microbiol Rev 55: 143190.
  • Mpiga, P., and Ravaoarinoro, M. (2006) Chlamdyia trachomatis persistence: an update. Microbiol Res 161: 919.
  • Nichols, B.A., Setzer, P.Y., Pang, F., and Dawson, C.R. (1985) New view of the surface projections of Chlamydia trachomatis. J Bacteriol 164: 344349.
  • Nordfelth, R., Kauppi, A.M., Norberg, H.A., Wolf-Watz, H., and Elofsson, M. (2005) Small molecule inhibitors specifically targeting type III secretion. Infect Immun 73: 31043114.
  • Pagano, R.E., and Martin, O.C. (1988) A series of flourescent N-acylsphingosines: synthesis, physical properties, and studies in cultured cells. Biochemistry 27: 44394445.
  • Rockey, D.D., Scidmore, M.A., Bannantine, J.P., and Brown, W.J. (2002) Proteins in the chlamydial inclusion membrane. Microbes Infect 4: 333340.
  • Scidmore, M.A., Rockey, D.D., Fischer, E.R., Heinzen, R.A., and Hackstadt, T. (1996) Vesicular interactions of the Chlamydia trachomatis inclusion are determined by chlamydial early protein synthesis rather than route of entry. Infect Immun 64: 53665372.
  • Scidmore, M., Fischer, E., and Hackstadt, T. (2003) Restricted fusion of Chlamydia trachomatis vesicles with endocytic compartments during the initial stages of infection. Infect Immun 71: 973984.
  • Scidmore-Carlson, M.A., Shaw, E.I., Dooley, C.A., Fischer, E.R., and Hackstadt, T. (1999) Identification and characterization of a Chlamydia trachomatis early operon encoding four novel inclusion membrane proteins. Mol Microbiol 33: 753765.
  • Seshadri, R., Paulsen, I., Eisen, J., Read, T., Nelson, K., Nelson, W., et al. (2003) Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc Natl Acad Sci USA 100: 54555460.
  • Shaw, E.I., Dooley, C.A., Fischer, E.R., Scidmore, M.A., Fields, K.A., and Hackstadt, T. (2000) Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle. Mol Microbiol 37: 913925.
  • Stenner-Liewen, F., Liewen, H., Zapata, J., Pawlowski, K., Godzik, A., and Reed, J. (2002) CADD, a Chlamydia protein that interacts with death receptors. J Biol Chem 277: 96339636.
  • Stephens, R.S., Kalman, S., Lammel, C., Fan, J., Marathe, R., Aravind, L., et al. (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282: 754759.
  • Subtil, A., Parsot, C., and Dautry-Varsat, A. (2001) Secretion of predicted Inc proteins of Chlamydia pneumoniae by a heterologous type III machinery. Mol Microbiol 39: 792800.
  • Subtil, A., Delevoye, C., Balana, M.E., Tastevin, L., Perrinet, S., and Dautry-Varsat, A. (2005) A directed screen for chlamydial proteins secreted by a type III mechanism identifies a translocated protein and numerous other new candidates. Mol Microbiol 56: 16361647.
  • Suchland, R.J., Rockey, D.D., Bannantine, J.P., and Stamm, W.E. (2000) Isolates of Chlamydia trachomatis that occupy nonfusogenic inclusions lack IncA, a protein localized to the inclusion membrane. Infect Immun 68: 360367.
  • Yuan, Y., Lyng, K., Zhang, Y.X., Rockey, D.D., and Morrison, R.P. (1992) Monoclonal antibodies define genus-specific, species-specific, and cross-reactive epitopes of the chlamydial 60-kilodalton heat shock protein (hsp60): specific immunodetection and purification of chlamydial hsp60. Infect Immun 60: 22882296.
  • Zhong, G., Fan, P., Ji, H., Dong, F., and Huang, Y. (2001) Identification of a chlamydial protease-like activity factor responsible for the degradation of host transcription factors. J Exp Med 193: 935942.