SEARCH

SEARCH BY CITATION

References

  • Ades, S.E. (2004) Control of the alternative sigma factor σE in Escherichia coli. Cur Opin Microbiol 7: 157162.
  • Alba, B.M., and Gross, C.A. (2004) Regulation of the Escherichia coli σE-dependent envelope stress response. Mol Microbiol 52: 613619.
  • Bashyam, M.D., and Hasnain, S.E. (2004) The extracytoplasmic function sigma factors: role in bacterial pathogenesis. Infect Genet Evol 4: 301308.
  • Blaudeck, N., Sprenger, G.A., Freudl, R., and Wiegert, T. (2001) Specificity of signal peptide recognition in TAT-dependent bacterial protein translocation. J Bacteriol 183: 604610.
  • Branda, S.S., Gonzalez-Pastor, J.E., Dervyn, E., Ehrlich, S.D., Losick, R., and Kolter, R. (2004) Genes involved in formation of structured multicellular communities by Bacillus subtilis. J Bacteriol 186: 39703979.
  • Brown, M.S., and Goldstein, J.L. (1999) A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci USA 96: 1104111048.
  • Butcher, B.G., and Helmann, J.D. (2006) Identification of Bacillus subtilis σw-dependent genes that provide intrinsic resistance to antimicrobial compounds produced by Bacilli. Mol Microbiol 60: 765782.
  • Cao, M., Bernat, B.A., Wang, Z., Armstrong, R.N., and Helmann, J.D. (2001) FosB, a cysteine-dependent fosfomycin resistance protein under the control of sigma(W), an extracytoplasmic-function sigma factor in Bacillus subtilis. J Bacteriol 183: 23802383.
  • Cao, M., Wang, T., Ye, R., and Helmann, J.D. (2002a) Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis σW and σM regulons. Mol Microbiol 45: 12671276.
  • Cao, M., Kobel, P.A., Morshedi, M.M., Wu, M.F.W., Paddon, C., and Helmann, J.D. (2002b) Defining the Bacillus subtilis σW regulon: a comparative analysis of promoter consensus search, run-off transcription/macroarray analysis (ROMA) and transcriptional profiling approaches. J Mol Biol 316: 443457.
  • Chen, J.C., Hottes, A.K., McAdams, H.H., McGrath, P.T., Viollier, P.H., and Shapiro, L. (2006) Cytokinesis signals truncation of the PodJ polarity factor by a cell cycle-regulated protease. EMBO J 25: 377386.
  • Ellermeier, C.D., and Losick, R. (2006) Evidence for a novel protease governing regulated intramembrane proteolysis and resistance to antimicrobial peptides in Bacillus subtilis. Genes Dev 20: 19111922.
  • Flynn, J.M., Levchenko, I., Sauer, R.T., and Baker, T.A. (2004) Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation. Genes Dev 18: 22922301.
  • Grant, S.G., Jessee, J., Bloom, F.R., and Hanahan, D. (1990) Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci USA 87: 46454649.
  • Härtl, B., Wehrl, W., Wiegert, T., Homuth, G., and Schumann, W. (2001) Development of a new integration site within the Bacillus subtilis chromosome and construction of compatible expression cassettes. J Bacteriol 183: 26962699.
  • Helmann, J.D. (2002) The extracytoplasmic function (ECF) sigma factors. Adv Microbiol Physiol 46: 47110.
  • Helmann, J.D., and Moran, C.P., Jr (2002) RNA polymerases and sigma factors. In Bacillus subtilis and Its Closest Relatives. Sonenshein, A.L., Hoch, J.A., and Losick, R. (eds). Washington, DC: American Society for Microbiology Press, pp. 289312.
  • Hirokawa, T., Boon-Chieng, S., and Mitaku, S. (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14: 378379.
  • Homuth, G., Heinemann, M., Zuber, U., and Schumann, W. (1996) The genes of lepA and hemN form a bicistronic operon in Bacillus subtilis. Microbiology 142: 16411649.
  • Homuth, G., Masuda, S., Mogk, A., Kobayashi, Y., and Schumann, W. (1997) The dnaK operon of Bacillus subtilis is heptacistronic. J Bacteriol 179: 11531164.
  • Huang, X., Fredrick, K.L., and Helmann, J.D. (1998) Promoter recognition by Bacillus subtilis sigmaW: autoregulation and partial overlap with the sigmaX regulon. J Bacteriol 180: 37653770.
  • Huang, X., Gaballa, A., Cao, M., and Helmann, J.D. (1999) Identification of target promoters for the Bacillus subtilis extracytoplasmic function σ factor σW. Mol Microbiol 31: 361371.
  • Kaltwasser, M., Wiegert, T., and Schumann, W. (2002) Construction and application of epitope- and green fluorescent protein-tagging integration vectors for Bacillus subtilis. Appl Environ Microbiol 68: 26242628.
  • Kanehara, K., Ito, K., and Akiyama, Y. (2003) YaeL proteolysis of RseA is controlled by the PDZ domain of YaeL and a Gln-rich region of RseA. EMBO J 22: 63896398.
  • Koide, A., Perego, M., and Hoch, J.A. (1999) ScoC regulates peptide transport and sporulation initiation in Bacillus subtilis. J Bacteriol 181: 41144117.
  • Leskela, S., Kontinen, V.P., and Sarvas, M. (1996) Molecular analysis of an operon in Bacillus subtilis encoding a novel ABC transporter with a role in exoprotein production, sporulation and competence. Microbiology 142: 7177.
  • Leskela, S., Wahlstrom, E., Hyyrylainen, H.L., Jacobs, M., Palva, A., Sarvas, M., and Kontinen, V.P. (1999) Ecs, an ABC transporter of Bacillus subtilis: dual signal transduction functions affecting expression of secreted proteins as well as their secretion. Mol Microbiol 31: 533543.
  • Lonetto, M.A., Brown, K.L., Rudd, K.E., and Buttner, M.J. (1994) Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase σ factors involved in the regulation of extracytoplasmic functions. Proc Natl Acad Sci USA 91: 75737577.
  • Nakano, M.M., Magnuson, R., Myers, A., Curry, J., Grossman, A.D., and Zuber, P. (1991) srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis. J Bacteriol 173: 17701778.
  • Perego, M., and Hoch, J.A. (1988) Sequence analysis and regulation of the hpr locus, a regulatory gene for protease production and sporulation in Bacillus subtilis. J Bacteriol 170: 25602567.
  • Petersohn, A., Brigulla, M., Haas, S., Hoheisel, J.D., Völker, U., and Hecker, M. (2001) Global analysis of the general stress response of Bacillus subtilis. J Bacteriol 183: 56175631.
  • Pietiäinen, M., Gardemeister, M., Mecklin, M., Leskela, S., Sarvas, M., and Kontinen, V.P. (2005) Cationic antimicrobial peptides elicit a complex stress response in Bacillus subtilis that involves ECF-type sigma factors and two-component signal transduction systems. Microbiology 151: 15771592.
  • Pummi, T., Leskela, S., Wahlstrom, E., Gerth, U., Tjalsma, H., Hecker, M., et al. (2002) ClpXP protease regulates the signal peptide cleavage of secretory preproteins in Bacillus subtilis with a mechanism distinct from that of the Ecs ABC transporter. J Bacteriol 184: 10101018.
  • Raivio, T.L., and Silhavy, T.J. (2001) Periplasmic stress and ECF sigma factors. Annu Rev Microbiol 55: 591624.
  • Saito, H., Shibata, T., and Ando, T. (1979) Mapping of genes determining nonpermissiveness and host-specific restriction to bacteriophages in Bacillus subtilis Marburg. Mol Gen Genet 170: 117122.
  • Sambrook, J., and Russell, D.W. (2005) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • Schöbel, S., Zellmeier, S., Schumann, W., and Wiegert, T. (2004) The Bacillus subtilis σW anti-sigma factor RsiW is degraded by intramembrane proteolysis through YluC. Mol Microbiol 52: 10911105.
  • Servant, P., Le, C.D., and Aymerich, S. (2005) CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes. Mol Microbiol 55: 14351451.
  • Steinmetz, M., and Richter, R. (1994a) Easy cloning of mini-Tn10 insertions from the Bacillus subtilis chromosome. J Bacteriol 176: 17611763.
  • Steinmetz, M., and Richter, R. (1994b) Plasmids designed to alter the antibiotic resistance expressed by insertion mutations in Bacillus subtilis, through in vivo recombination. Gene 142: 7983.
  • Takeshita, S., Sato, M., Toba, M., Masahashi, W., and Hashimoto-Gotoh, T. (1987) High-copy-number and low-copy-number plasmid vectors for lacZ alpha-complementation and chloramphenicol- or kanamycin-resistance selection. Gene 61: 6374.
  • Tanaka, S., Lerner, S.A., and Lin, E.C. (1967) Replacement of a phosphoenolpyruvate-dependent phosphotransferase by a nicotinamide adenine dinucleotide-linked dehydrogenase for the utilization of mannitol. J Bacteriol 93: 642648.
  • Turner, M.S., and Helmann, J.D. (2000) Mutations in multidrug efflux homologs, sugar isomerases, and antimicrobial biosynthesis genes differentially elevate activity of the σX and σW factors in Bacillus subtilis. J Bacteriol 182: 52025210.
  • Versteeg, S., Mogk, A., and Schumann, W. (1999) The Bacillus subtilis htpG gene is not involved in thermal stress management. Mol Gen Genet 261: 582588.
  • Walsh, N.P., Alba, B.M., Bose, B., Gross, C.A., and Sauer, R.T. (2003) OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 113: 6171.
  • Wehrl, W., Niederweis, M., and Schumann, W. (2000) The FtsH protein accumulates at the septum of Bacillus subtilis during cell division and sporulation. J Bacteriol 182: 38703873.
  • Wiegert, T., Homuth, G., Versteeg, S., and Schumann, W. (2001) Alkaline shock induces the Bacillus subtilis σW regulon. Mol Microbiol 41: 5971.
  • Zahler, S.A., Korman, R.Z., Rosenthal, R., and Hemphill, H.E. (1977) Bacillus subtilis bacteriophage SPbeta: localization of the prophage attachment site, and specialized transduction. J Bacteriol 129: 556558.
  • Zellmeier, S., Zuber, U., Schumann, W., and Wiegert, T. (2003) The absence of FtsH metalloprotease activity causes overexpression of the sigmaW-controlled pbpE gene, resulting in filamentous growth of Bacillus subtilis. J Bacteriol 185: 973982.
  • Zellmeier, S., Schumann, W., and Wiegert, T. (2006) Involvement of Clp protease activity in modulating the Bacillus subtilis σW stress response. Mol Microbiol 61: 15691582.
  • Zhou, R., and Kroos, L. (2005) Serine proteases from two cell types target different components of a complex that governs regulated intramembrane proteolysis of pro-sigmaK during Bacillus subtilis development. Mol Microbiol 58: 835846.44