Cryptococcus neoformans is a pathogenic yeast that causes life-threatening meningoencephalitis and grows well on mycological media regardless of inoculum size. Interestingly, a deletion of the global repressor TUP1 in C. neoformans uncovered a density-dependent growth phenotype reminiscent of the quorum-sensing phenomenon. An inoculum size of lower than 103 cells of the tup1Δ strain failed to form colonies on agar media while inocula of 105−106 cells per plate formed a lawn. This phenotype, expressed as the inability to grow at low cell densities, was rescued by the culture filtrate from a high cell density tup1Δ culture and the active molecule in this culture filtrate was identified to be an oligopeptide composed of 11 amino acids. Activity assays, using a synthetic version of the peptide with strains harbouring a deletion of the corresponding gene, proved that the oligopeptide functioned as an autoregulatory molecule responsible for the density-dependent phenotype. Although a density-dependent growth phenotype has been reported in several species of Ascomycetes, no peptide has been reported to function as an autoregulator in the Kingdom Fungi. The identification of an 11-mer peptide as an autoregulatory molecule in C. neoformans suggests that a diverse mechanism of cell-to-cell communication exists in the Kingdom Fungi.