SEARCH

SEARCH BY CITATION

References

  • Aranda-Olmedo, I., Ramos, J.L., and Marqués, S. (2005) Integration of signals through Crc and PtsN in catabolite repression of Pseudomonas putida TOL plasmid pWW0. Appl Environ Microbiol 71: 41914198.
  • Baker, C.S., Morozov, I., Suzuki, K., Romeo, T., and Babitzke, P. (2002) CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli. Mol Microbiol 44: 15991610.
  • Bauchop, T., and Eldsen, S.R. (1960) The growth of microorganisms in relation to their energy supply. J Gen Microbiol 23: 457569.
  • Van Beilen, J.B., Panke, S., Lucchini, S., Franchini, A.G., Röthlisberger, M., and Witholt, B. (2001) Analysis of Pseudomonas putida alkane degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk-genes. Microbiology 147: 16211630.
  • Cases, I., and De Lorenzo, V. (2005) Promoters in the environment: transcriptional regulation in its natural context. Nat Rev Microbiol 3: 105118.
  • Canosa, I., Yuste, L., and Rojo, F. (1999) Role of the alternative sigma factor sigmaS in expression of the AlkS regulator of the Pseudomonas oleovorans alkane degradation pathway. J Bacteriol 181: 17481754.
  • Canosa, I., Sánchez-Romero, J.M., Yuste, L., and Rojo, F. (2000) A positive feedback mechanism controls expression of AlkS, the transcriptional regulator of the Pseudomonas oleovorans alkane degradation pathway. Mol Microbiol 35: 791799.
  • Collier, D.N., Hager, P.W., and Phibbs, P.V., Jr (1996) Catabolite repression control in Pseudomonads. Res Microbiol 147: 551561.
  • Dennis, J.J., and Zylstra, G.J. (1998) Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of Gram-negative bacterial genomes. Appl Environ Microbiol 64: 27102715.
  • Dinamarca, M.A., Ruiz-Manzano, A., and Rojo, F. (2002) Inactivation of cytochrome o ubiquinol oxidase relieves catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway. J Bacteriol 184: 37853793.
  • Dinamarca, M.A., Aranda-Olmedo, I., Puyet, A., and Rojo, F. (2003) Expression of the Pseudomonas putida OCT plasmid alkane degradation pathway is modulated by two different global control signals: evidence from continuous cultures. J Bacteriol 185: 47724778.
  • Dlakic, M. (2000) Functionally unrelated signalling proteins contain a fold similar to Mg2+-dependent endonucleases. Trends Biochem Sci 25: 272273.
  • Dubey, A.K., Baker, C.S., Suzuki, K., Jones, A.D., Pandit, P., Romeo, T., and Babitzke, P. (2003) CsrA regulates translation of the Escherichia coli carbon starvation gene, cstA, by blocking ribosome access to the cstA transcript. J Bacteriol 185: 44504460.
  • Franklin, F.C., Bagdasarian, M., Bagdasarian, M.M., and Timmis, K.N. (1981) Molecular and functional analysis of the TOL plasmid pWWO from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta cleavage pathway. Proc Nat Acad Sci USA 78: 74587462.
  • Grund, A., Shapiro, J., Fennewald, M., Bacha, P., Leahy, J., Markbreiter, K., et al. (1975) Regulation of alkane oxidation in Pseudomonas putida. J Bacteriol 123: 546556.
  • Herrero, M., De Lorenzo, V., and Timmis, K.N. (1990) Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria. J Bacteriol 172: 65576567.
  • Hester, K.L., Lehman, J., Najar, F., Song, L., Roe, B.A., MacGregor, C.H., et al. (2000a) Crc is involved in catabolite repression control of the bkd operons of Pseudomonas putida and Pseudomonas aeruginosa. J Bacteriol 182: 11441149.
  • Hester, K.L., Madhusudhan, K.T., and Sokatch, J.R. (2000b) Catabolite repression control by crc in 2xYT medium is mediated by posttranscriptional regulation of bkdR expression in Pseudomonas putida. J Bacteriol 182: 11501153.
  • Heurlier, K., Williams, F., Heeb, S., Dormond, C., Pessi, G., Singer, D., et al. (2004) Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J Bacteriol 186: 29362945.
  • Hirano, S.S., and Upper, C.D. (2000) Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae – a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev 64: 624653.
  • Kay, E., Dubuis, C., and Haas, D. (2005) Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc Natl Acad Sci USA 102: 1713617141.
  • Kessler, B., De Lorenzo, V., and Timmis, K.N. (1992) A general system to integrate lacZ fusions into the chromosomes of Gram-negative eubacteria: regulation of the Pm promoter of the TOL plasmid studied with all controlling elements in monocopy. Mol Gen Genet 233: 293301.
  • Kozak, M. (2005) Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361: 1337.
  • De Lorenzo, V., and Timmis, K.N. (1994) Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol 235: 386405.
  • Lugtenberg, B.J., and Dekkers, L.C. (1999) What makes Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1: 913.
  • MacGregor, C.H., Arora, S.K., Hager, P.W., Dail, M.B., and Phibbs, P.V., Jr (1996) The nucleotide sequence of the Pseudomonas aeruginosa pyrE-crc-rph region and the purification of the crc gene product. J Bacteriol 178: 56275635.
  • Mahajan-Miklos, S., Rahme, L.G., and Ausubel, F.M. (2000) Elucidating the molecular mechanisms of bacterial virulence using non-mammalian hosts. Mol Microbiol 37: 981988.
  • Martins dos Santos, V.A., Heim, S., Moore, E.R., Stratz, M., and Timmis, K.N. (2004) Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ Microbiol 6: 12641286.
  • Miller, J.H. (1972) Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  • Morales, G., Linares, J.F., Beloso, A., Albar, J.P., Martínez, J.L., and Rojo, F. (2004) The Pseudomonas putida Crc global regulator controls the expression of genes from several chromosomal catabolic pathways for aromatic compounds. J Bacteriol 186: 13371344.
  • O'Toole, G.A., Gibbs, K.A., Hager, P.W., Phibbs, P.V., Jr and Kolter, R. (2000) The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J Bacteriol 182: 425431.
  • Panke, S., Meyer, A., Huber, C.M., Witholt, B., and Wubbolts, M.G. (1999) An alkane-responsive expression system for the production of fine chemicals. Appl Environ Microbiol 65: 23242332.
  • Pessi, G., Williams, F., Hindle, Z., Heurlier, K., Holden, M.T., Camara, M., et al. (2001) The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa. J Bacteriol 183: 66766683.
  • Ramos, J.L., Duque, E., Rodríguez-Hervá, J.J., Godoy, P., Haidour, A., Reyes, F., and Fernández-Barrero, A. (1997) Mechanisms for solvent tolerance in bacteria. J Biol Chem 272: 38873890.
  • Rojo, F., and Dinamarca, M.A. (2004) Catabolite repression and physiological control. In Pseudomonas, Vol. 2. Ramos, J.L. (ed.). New York, NY: Kluwer Academic/Plenum Publishers, pp. 365387.
  • Romeo, T. (1998) Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 29: 13211330.
  • Rosenberg, A.H., Lade, B.N., Chui, D.S., Lin, S.W., Dunn, J.J., and Studier, F.W. (1987) Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene 56: 125135.
  • Ruiz-Manzano, A., Yuste, L., and Rojo, F. (2005) Levels and activity of the Pseudomonas putida global regulatory protein Crc vary according to growth conditions. J Bacteriol 187: 36783686.
  • Saier, M.H., Jr (1998) Multiple mechanisms controlling carbon metabolism in bacteria. Biotechnol Bioeng 58: 170174.
  • Sambrook, J., and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  • Schlax, P.J., and Worhunsky, D.J. (2003) Translational repression mechanisms in prokaryotes. Mol Microbiol 48: 11571169.
  • Shingler, V. (2003) Integrated regulation in response to aromatic compounds: from signal sensing to attractive behaviour. Environ Microbiol 5: 12261241.
  • Staijen, I.E., Marcionelli, R., and Witholt, B. (1999) The PalkBFGHJKL promoter is under carbon catabolite repression control in Pseudomonas oleovorans but not in Escherichia coli alk+ recombinants. J Bacteriol 181: 16101616.
  • Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., et al. (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406: 959964.
  • Stülke, J., and Hillen, W. (1999) Carbon catabolite repression in bacteria. Curr Opin Microbiol 2: 195201.
  • Timmis, K.N. (2002) Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ Microbiol 4: 779781.
  • Wackett, L.P. (2003) Pseudomonas putida – a versatile biocatalyst. Nat Biotechnol 21: 136138.
  • Weilbacher, T., Suzuki, K., Dubey, A.K., Wang, X., Gudapaty, S., Morozov, I., et al. (2003) A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol Microbiol 48: 657670.
  • Wolff, J.A., MacGregor, C.H., Eisenberg, R.C., and Phibbs, P.V., Jr (1991) Isolation and characterization of catabolite repression control mutants of Pseudomonas aeruginosa PAO. J Bacteriol 173: 47004706.
  • Yuste, L., and Rojo, F. (2001) Role of the crc gene in catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway. J Bacteriol 183: 61976206.
  • Yuste, L., Canosa, I., and Rojo, F. (1998) Carbon-source-dependent expression of the PalkB promoter from the Pseudomonas oleovorans alkane degradation pathway. J Bacteriol 180: 52185226.