SEARCH

SEARCH BY CITATION

References

  • Argyrou, A., Jin, L., Siconilfi-Baez, L., Angeletti, R.H., and Blanchard, J.S. (2006) Proteome-wide profiling of isoniazid targets in Mycobacterium tuberculosis. Biochemistry 45: 1394713953.
  • Av-Gay, Y., and Everett, M. (2000) The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. Trends Microbiol 8: 238244.
  • Banerjee, A., Dubnau, E., Quemard, A., Balasubramanian, V., Um, K.S., Wilson, T., et al. (1994) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263: 227230.
  • Bhatt, A., Kremer, L., Dai, A.Z., Sacchettini, J.C., and Jacobs, W.R., Jr (2005) Conditional depletion of KasA, a key enzyme of mycolic acid biosynthesis, leads to mycobacterial cell lysis. J Bacteriol 187: 75967606.
  • Bhatt, A., Fujiwara, N., Bhatt, K., Gurcha, S.S., Kremer, L., Chen, B., et al. (2007) Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. Proc Natl Acad Sci USA 104: 51575162.
  • Brennan, P.J., and Nikaido, H. (1995) The envelope of mycobacteria. Annu Rev Biochem 64: 2963.
  • Brown, A.K., Sridharan, S., Kremer, L., Lindenberg, S., Dover, L.G., Sacchettini, J.C., and Besra, G.S. (2005) Probing the mechanism of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthase III mtFabH: factors influencing catalysis and substrate specificity. J Biol Chem 280: 3253932547.
  • Choi, K.H., Kremer, L., Besra, G.S., and Rock, C.O. (2000) Identification and substrate specificity of beta-ketoacyl (acyl carrier protein) synthase III (mtFabH) from Mycobacterium tuberculosis. J Biol Chem 275: 2820128207.
  • Colas, P., Cohen, B., Jessen, T., Grishina, I., McCoy, J., and Brent, R. (1996) Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature 380: 548550.
  • Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., et al. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537544.
  • Daffe, M., and Draper, P. (1998) The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39: 131203.
  • Dubnau, E., Chan, J., Raynaud, C., Mohan, V.P., Laneelle, M.A., Yu, K., et al. (2000) Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol Microbiol 36: 630637.
  • Gande, R., Gibson, K.J., Brown, A.K., Krumbach, K., Dover, L.G., Sahm, H., et al. (2004) Acyl-CoA carboxylases (accD2 and accD3), together with a unique polyketide synthase (Cg-pks), are key to mycolic acid biosynthesis in Corynebacterianeae such as Corynebacterium glutamicum and Mycobacterium tuberculosis. J Biol Chem 279: 4484744857.
  • Gao, L.Y., Laval, F., Lawson, E.H., Groger, R.K., Woodruff, A., Morisaki, J.H., et al. (2003) Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy. Mol Microbiol 49: 15471563.
  • Glickman, M.S., Cox, J.S., and Jacobs, W.R., Jr (2000) A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell 5: 717727.
  • Glickman, M.S., and Jacobs, W.R., Jr (2001) Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline. Cell 104: 477485.
  • Gokhale, R.S., Saxena, P., Chopra, T., and Mohanty, D. (2007) Versatile polyketide enzymatic machinery for the biosynthesis of complex mycobacterial lipids. Nat Prod Rep 24: 267277.
  • Greenstein, A.E., Grundner, C., Echols, N., Gay, L.M., Lombana, T.N., Miecskowski, C.A., et al. (2005) Structure/function studies of Ser/Thr and Tyr protein phosphorylation in Mycobacterium tuberculosis. J Mol Microbiol Biotechnol 9: 167181.
  • Hayashi, T., Yamamoto, O., Sasaki, H., Okazaki, H., and Kawaguchi, A. (1984) Inhibition of fatty acid synthesis by the antibiotic thiolactomycin. J Antibiot (Tokyo) 37: 14561461.
  • Heath, R.J., and Rock, C.O. (2002) The Claisen condensation in biology. Nat Prod Rep 19: 581596.
  • Heath, R.J., and Rock, C.O. (2004) Fatty acid biosynthesis as a target for novel antibacterials. Curr Opin Invest Drugs 5: 146153.
  • Hunter, R.L., Olsen, M., Jagannath, C., and Actor, J.K. (2006a) Trehalose 6,6′-dimycolate and lipid in the pathogenesis of caseating granulomas of tuberculosis in mice. Am J Pathol 168: 12491261.
  • Hunter, R.L., Venkataprasad, N., and Olsen, M.R. (2006b) The role of trehalose dimycolate (cord factor) on morphology of virulent M. tuberculosis in vitro. Tuberculosis (Edinb) 86: 349356.
  • Jones, P.B., Parrish, N.M., Houston, T.A., Stapon, A., Bansal, N.P., Dick, J.D., and Townsend, C.A. (2000) A new class of antituberculosis agents. J Med Chem 43: 33043314.
  • Kamal, A., Shaik, A.A., Sinha, R., Yadav, J.S., and Arora, S.K. (2005) Antitubercular agents. Part 2: New thiolactomycin analogues active against Mycobacterium tuberculosis. Bioorg Med Chem Lett 15: 19271929.
  • Kim, P., Zhang, Y.M., Shenoy, G., Nguyen, Q.A., Boshoff, H.I., Manjunatha, U.H., et al. (2006) Structure-activity relationships at the 5-position of thiolactomycin: an intact (5R)-isoprene unit is required for activity against the condensing enzymes from Mycobacterium tuberculosis and Escherichia coli. J Med Chem 49: 159171.
  • Kremer, L., Baulard, A.R., and Besra, G.S. (2000a) Genetics of mycolic acid biosynthesis. In Molecular Genetics of Mycobacteria. Hatfull, G.F., and Jacobs, W.R., Jr (eds). Washington, DC: American Society for Microbiology Press, pp. 173190.
  • Kremer, L., Douglas, J.D., Baulard, A.R., Morehouse, C., Guy, M.R., Alland, D., et al. (2000b) Thiolactomycin and related analogues as novel anti-mycobacterial agents targeting KasA and KasB condensing enzymes in Mycobacterium tuberculosis. J Biol Chem 275: 1685716864.
  • Kremer, L., Nampoothiri, K.M., Lesjean, S., Dover, L.G., Graham, S., Betts, J., et al. (2001) Biochemical characterization of acyl carrier protein (AcpM) and malonyl-CoA: AcpM transacylase (mtFabD), two major components of Mycobacterium tuberculosis fatty acid synthase II. J Biol Chem 276: 2796727974.
  • Kremer, L., Dover, L.G., Carrere, S., Nampoothiri, K.M., Lesjean, S., Brown, A.K., et al. (2002) Mycolic acid biosynthesis and enzymic characterization of the beta-ketoacyl-ACP synthase A-condensing enzyme from Mycobacterium tuberculosis. Biochem J 364: 423430.
  • Kremer, L., Dover, L.G., Morbidoni, H.R., Vilcheze, C., Maughan, W.N., Baulard, A., et al. (2003) Inhibition of InhA activity, but not KasA activity, induces formation of a KasA-containing complex in mycobacteria. J Biol Chem 278: 2054720554.
  • Lamichhane, G., Zignol, M., Blades, N.J., Geiman, D.E., Dougherty, A., Grosset, J., et al. (2003) A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Proc Natl Acad Sci USA 100: 72137218.
  • Larsen, M.H., Vilcheze, C., Kremer, L., Besra, G.S., Parsons, L., Salfinger, M., et al. (2002) Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis. Mol Microbiol 46: 453466.
  • Lea-Smith, D.J., Pyke, J.S., Tull, D., McConville, M.J., Coppel, R.L., and Crellin, P.K. (2007) The reductase that catalyzes mycolic motif synthesis is required for efficient attachment of mycolic acids to arabinogalactan. J Biol Chem 282: 1100011008.
  • Marrakchi, H., Ducasse, S., Labesse, G., Montrozier, H., Margeat, E., Emorine, L., et al. (2002) MabA (FabG1), a Mycobacterium tuberculosis protein involved in the long-chain fatty acid elongation system FAS-II. Microbiology 148: 951960.
  • Mdluli, K., Slayden, R.A., Zhu, Y., Ramaswamy, S., Pan, X., Mead, D., Crane, D.D., Musser, J.M., and Barry, C.E., 3rd (1998) Inhibition of a Mycobacterium tuberculosis beta-ketoacyl ACP synthase by isoniazid. Science 280: 16071610.
  • Molle, V., Brown, A.K., Besra, G.S., Cozzone, A.J., and Kremer, L. (2006) The condensing activities of the Mycobacterium tuberculosis type II fatty acid synthase are differentially regulated by phosphorylation. J Biol Chem 281: 3009430103.
  • Ojha, A., Anand, M., Bhatt, A., Kremer, L., Jacobs, W.R., Jr, and Hatfull, G.F. (2005) GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123: 861873.
  • Papavinasasundaram, K.G., Chan, B., Chung, J.H., Colston, M.J., Davis, E.O., and Av-Gay, Y. (2005) Deletion of the Mycobacterium tuberculosis pknH gene confers a higher bacillary load during the chronic phase of infection in BALB/c mice. J Bacteriol 187: 57515760.
  • Parrish, N.M., Houston, T., Jones, P.B., Townsend, C., and Dick, J.D. (2001) In vitro activity of a novel antimycobacterial compound, N-octanesulfonylacetamide, and its effects on lipid and mycolic acid synthesis. Antimicrob Agents Chemother 45: 11431150.
  • Portevin, D., De Sousa-D'Auria, C., Houssin, C., Grimaldi, C., Chami, M., Daffe, M., and Guilhot, C. (2004) A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc Natl Acad Sci USA 101: 314319.
  • Price, A.C., Choi, K.H., Heath, R.J., Li, Z., White, S.W., and Rock, C.O. (2001) Inhibition of beta-ketoacyl-acyl carrier protein synthases by thiolactomycin and cerulenin. Structure and mechanism. J Biol Chem 276: 65516559.
  • Quemard, A., Sacchettini, J.C., Dessen, A., Vilcheze, C., Bittman, R., Jacobs, W.R., Jr, and Blanchard, J.S. (1995) Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Biochemistry 34: 82358241.
  • Rao, V., Fujiwara, N., Porcelli, S.A., and Glickman, M.S. (2005) Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J Exp Med 201: 535543.
  • Rao, V., Gao, F., Chen, B., Jacobs, W.R., Jr, and Glickman, M.S. (2006) Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis-induced inflammation and virulence. J Clin Invest 116: 16601667.
  • Sassetti, C.M., Boyd, D.H., and Rubin, E.J. (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48: 7784.
  • Scarsdale, J.N., Kazanina, G., He, X., Reynolds, K.A., and Wright, H.T. (2001) Crystal structure of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthase III. J Biol Chem 276: 2051620522.
  • Schaeffer, M.L., Agnihotri, G., Volker, C., Kallender, H., Brennan, P.J., and Lonsdale, J.T. (2001) Purification and biochemical characterization of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthases KasA and KasB. J Biol Chem 276: 4702947037.
  • Senior, S.J., Illarionov, P.A., Gurcha, S.S., Campbell, I.B., Schaeffer, M.L., Minnikin, D.E., and Besra, G.S. (2003) Biphenyl-based analogues of thiolactomycin, active against Mycobacterium tuberculosis mtFabH fatty acid condensing enzyme. Bioorg Med Chem Lett 13: 36853688.
  • Senior, S.J., Illarionov, P.A., Gurcha, S.S., Campbell, I.B., Schaeffer, M.L., Minnikin, D.E., and Besra, G.S. (2004) Acetylene-based analogues of thiolactomycin, active against Mycobacterium tuberculosis mtFabH fatty acid condensing enzyme. Bioorg Med Chem Lett 14: 373376.
  • Shawver, L.K., Slamon, D., and Ullrich, A. (2002) Smart drugs: tyrosine kinase inhibitors in cancer therapy. Cancer Cell 1: 117123.
  • Slayden, R.A., Lee, R.E., Armour, J.W., Cooper, A.M., Orme, I.M., Brennan, P.J., and Besra, G.S. (1996) Antimycobacterial action of thiolactomycin: an inhibitor of fatty acid and mycolic acid synthesis. Antimicrob Agents Chemother 40: 28132819.
  • Slayden, R.A., and Barry, C.E., 3rd (2002) The role of KasA and KasB in the biosynthesis of meromycolic acids and isoniazid resistance in Mycobacterium tuberculosis. Tuberculosis (Edinb) 82: 149160.
  • Smith, S., Witkowski, A., and Joshi, A.K. (2003) Structural and functional organization of the animal fatty acid synthase. Prog Lipid Res 42: 289317.
  • Sridharan, S., Wang, L., Brown, A.K., Dover, L.G., Kremer, L., Besra, G.S., and Sacchettini, J.C. (2007) X-ray crystal structure of Mycobacterium tuberculosis beta-ketoacyl acyl carrier protein synthase II (mtKasB). J Mol Biol 366: 469480.
  • Starck, J., Kallenius, G., Marklund, B.I., Andersson, D.I., and Akerlund, T. (2004) Comparative proteome analysis of Mycobacterium tuberculosis grown under aerobic and anaerobic conditions. Microbiology 150: 38213829.
  • Takayama, K., and Qureshi, N. (1984) Structure and synthesis of lipids. In The Mycobacteria: a Sourcebook. Kubica, G.P., and Wayne, L.G. (eds). New York, NY: Marcel Dekker, pp. 315344.
  • Takayama, K., Wang, C., and Besra, G.S. (2005) Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 18: 81101.
  • Trivedi, O.A., Arora, P., Sridharan, V., Tickoo, R., Mohanty, D., and Gokhale, R.S. (2004) Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature 428: 441445.
  • Veyron-Churlet, R., Guerrini, O., Mourey, L., Daffe, M., and Zerbib, D. (2004) Protein–protein interactions within the Fatty Acid Synthase-II system of Mycobacterium tuberculosis are essential for mycobacterial viability. Mol Microbiol 54: 11611172.
  • Vilcheze, C., Wang, F., Arai, M., Hazbon, M.H., Colangeli, R., Kremer, L., et al. (2006) Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nat Med 12: 10271029.
  • Walburger, A., Koul, A., Ferrari, G., Nguyen, L., Prescianotto-Baschong, C., Huygen, K., et al. (2004) Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science 304: 18001804.
  • Yuan, Y., Zhu, Y., Crane, D.D., and Barry, C.E., 3rd (1998) The effect of oxygenated mycolic acid composition on cell wall function and macrophage growth in Mycobacterium tuberculosis. Mol Microbiol 29: 14491458.
  • Zhang, Y., Wade, M.M., Scorpio, A., Zhang, H., and Sun, Z. (2003) Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J Antimicrob Chemother 52: 790795.
  • Zimhony, O., Cox, J.S., Welch, J.T., Vilcheze, C., and Jacobs, W.R., Jr (2000) Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nat Med 6: 10431047.
  • Zimhony, O., Vilcheze, C., Arai, M., Welch, J.T., and Jacobs, W.R., Jr (2007) Pyrazinoic acid and its n-propyl ester inhibit fatty acid synthase type I in replicating tubercle bacilli. Antimicrob Agents Chemother 51: 752754.