SEARCH

SEARCH BY CITATION

References

  • Asanuma, N., and Hino, T. (2006) Presence of NAD+-specific glyceraldehyde-3-phosphate dehydrogenase and CcpA-dependent transcription of its gene in the ruminal bacterium Streptococcus bovis. FEMS Microbiol Lett 257: 1723.
  • Barelle, C.J., Priest, C.L., Maccallum, D.M., Gow, N.A., Odds, F.C., and Brown, A.J. (2006) Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell Microbiol 8: 961971.
  • Barocchi, M.A., Ries, J., Zogaj, X., Hemsley, C., Albiger, B., Kanth, A., et al. (2006) A pneumococcal pilus influences virulence and host inflammatory responses. Proc Natl Acad Sci USA 103: 28572862.
  • Bogaert, D., De Groot, R., and Hermans, P.W. (2004) Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis 4: 144154.
  • Bogs, J., and Geider, K. (2000) Molecular analysis of sucrose metabolism of Erwinia amylovora and influence on bacterial virulence. J Bacteriol 182: 53515358.
  • Bricker, A.L., and Camilli, A. (1999) Transformation of a type 4 encapsulated strain of Streptococcus pneumoniae. FEMS Microbiol Lett 172: 131135.
  • Chang, D.E., Smalley, D.J., Tucker, D.L., Leatham, M.P., Norris, W.E., Stevenson, S.J., et al. (2004) Carbon nutrition of Escherichia coli in the mouse intestine. Proc Natl Acad Sci USA 101: 74277432.
  • Chapuy-Regaud, S., Ogunniyi, A.D., Diallo, N., Huet, Y., Desnottes, J.F., Paton, J.C., et al. (2003) RegR, a global LacI/GalR family regulator, modulates virulence and competence in Streptococcus pneumoniae. Infect Immun 71: 26152625.
  • Chico-Calero, I., Suarez, M., Gonzalez-Zorn, B., Scortti, M., Slaghuis, J., Goebel, W., and Vazquez-Boland, J.A. (2002) Hpt, a bacterial homolog of the microsomal glucose-6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc Natl Acad Sci USA 99: 431436.
  • Exley, R.M., Goodwin, L., Mowe, E., Shaw, J., Smith, H., Read, R.C., and Tang, C.M. (2005) Neisseria meningitidis lactate permease is required for nasopharyngeal colonization. Infect Immun 73: 57625766.
  • Gosink, K.K., Mann, E.R., Guglielmo, C., Tuomanen, E.I., and Masure, H.R. (2000) Role of novel choline binding proteins in virulence of Streptococcus pneumoniae. Infect Immun 68: 56905695.
  • Hava, D.L., and Camilli, A. (2002) Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol Microbiol 45: 13891406.
  • Hava, D.L., Hemsley, C.J., and Camilli, A. (2003a) Transcriptional regulation in the Streptococcus pneumoniae rlrA pathogenicity islet by RlrA. J Bacteriol 185: 413421.
  • Hava, D.L., LeMieux, J., and Camilli, A. (2003b) From nose to lung: the regulation behind Streptococcus pneumoniae virulence factors. Mol Microbiol 50: 11031110.
  • Henkin, T.M., Grundy, F.J., Nicholson, W.L., and Chambliss, G.H. (1991) Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Mol Microbiol 5: 575584.
  • Henrissat, B., and Bairoch, A. (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293: 781788.
  • Hiratsuka, K., Wang, B., Sato, Y., and Kuramitsu, H. (1998) Regulation of sucrose-6-phosphate hydrolase activity in Streptococcus mutans: characterization of the scrR gene. Infect Immun 66: 37363743.
  • Horton, R.M., Cai, Z.L., Ho, S.N., and Pease, L.R. (1990) Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8: 528535.
  • Iyer, R., Baliga, N.S., and Camilli, A. (2005) Catabolite control protein A (CcpA) contributes to virulence and regulation of sugar metabolism in Streptococcus pneumoniae. J Bacteriol 187: 83408349.
  • Johnston, J.W., Myers, L.E., Ochs, M.M., Benjamin, W.H., Jr, Briles, D.E., and Hollingshead, S.K. (2004) Lipoprotein PsaA in virulence of Streptococcus pneumoniae: surface accessibility and role in protection from superoxide. Infect Immun 72: 58585867.
  • Kadioglu, A., Taylor, S., Iannelli, F., Pozzi, G., Mitchell, T.J., and Andrew, P.W. (2002) Upper and lower respiratory tract infection by Streptococcus pneumoniae is affected by pneumolysin deficiency and differences in capsule type. Infect Immun 70: 28862890.
  • Kim, H.J., Roux, A., and Sonenshein, A.L. (2002) Direct and indirect roles of CcpA in regulation of Bacillus subtilis Krebs cycle genes. Mol Microbiol 45: 179190.
  • Kuramitsu, H.K. (1973) Characterization of invertase activity from cariogenic Streptococcus mutans. J Bacteriol 115: 10031010.
  • Kwon, H.Y., Ogunniyi, A.D., Choi, M.H., Pyo, S.N., Rhee, D.K., and Paton, J.C. (2004) The ClpP protease of Streptococcus pneumoniae modulates virulence gene expression and protects against fatal pneumococcal challenge. Infect Immun 72: 56465653.
  • Lacks, S. (1966) Integration efficiency and genetic recombination in pneumococcal transformation. Genetics 53: 207235.
  • Lau, G.W., Haataja, S., Lonetto, M., Kensit, S.E., Marra, A., Bryant, A.P., et al. (2001) A functional genomic analysis of type 3 Streptococcus pneumoniae virulence. Mol Microbiol 40: 555571.
  • Luesink, E.J., Van Herpen, R.E., Grossiord, B.P., Kuipers, O.P., and De Vos, W.M. (1998) Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Mol Microbiol 30: 789798.
  • Martin, B., Prudhomme, M., Alloing, G., Granadel, C., and Claverys, J.P. (2000) Cross-regulation of competence pheromone production and export in the early control of transformation in Streptococcus pneumoniae. Mol Microbiol 38: 867878.
  • McCullers, J.A., and Tuomanen, E.I. (2001) Molecular pathogenesis of pneumococcal pneumonia. Front Biosci 6: D877D889.
  • McKinney, J.D., Honer zu Bentrup, K., Munoz-Elias, E.J., Miczak, A., Chen, B., Chan, W.T., et al. (2000) Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406: 735738.
  • Miller, G.I. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31: 426428.
  • Munoz-Elias, E.J., and McKinney, J.D. (2005) Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11: 638644.
  • Munoz-Elias, E.J., and McKinney, J.D. (2006) Carbon metabolism of intracellular bacteria. Cell Microbiol 8: 1022.
  • Naderer, T., Ellis, M.A., Sernee, M.F., De Souza, D.P., Curtis, J., Handman, E., and McConville, M.J. (2006) Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase. Proc Natl Acad Sci USA 103: 55025507.
  • Ogunniyi, A.D., LeMessurier, K.S., Graham, R.M., Watt, J.M., Briles, D.E., Stroeher, U.H., and Paton, J.C. (2007) Contributions of pneumolysin, pneumococcal surface protein A (PspA), and PspC to pathogenicity of Streptococcus pneumoniae D39 in a mouse model. Infect Immun 75: 18431851.
  • Orihuela, C.J., Gao, G., and Francis, K.P., Yu, J., and Tuomanen, E.I. (2004) Tissue-specific contributions of pneumococcal virulence factors to pathogenesis. J Infect Dis 190: 16611669.
  • Paton, J.C., and Giammarinaro, P. (2001) Genome-based analysis of pneumococcal virulence factors: the quest for novel vaccine antigens and drug targets. Trends Microbiol 9: 515518.
  • Peekhaus, N., and Conway, T. (1998) What's for dinner? Entner–Doudoroff metabolism in Escherichia coli. J Bacteriol 180: 34953502.
  • Polissi, A., Pontiggia, A., Feger, G., Altieri, M., Mottl, H., Ferrari, L., and Simon, D. (1998) Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect Immun 66: 56205629.
  • Pons, T., Olmea, O., Chinea, G., Beldarrain, A., Marquez, G., Acosta, N., et al. (1998) Structural model for family 32 of glycosyl-hydrolase enzymes. Proteins 33: 383395.
  • Reddy, V.A., and Maley, F. (1990) Identification of an active-site residue in yeast invertase by affinity labeling and site-directed mutagenesis. J Biol Chem 265: 1081710820.
  • Ritsema, T., Verhaar, A., Vijin, I., and Smeekens, S. (2004) Fructosyltransferase mutants specify a function for the beta-fructosidase motif of the sucrose-binding box in specifying the fructan type synthesized. Plant Mol Biol 54: 853863.
  • Ritsema, T., Hernandez, L., Verhaar, A., Altenbach, D., Boller, T., Wiemken, A., and Smeekens, S. (2006) Developing fructan-synthesizing capability in a plant invertase via mutations in the sucrose-binding box. Plant J 48: 228237.
  • Rogers, J.D., and Scannapieco, F.A. (2001) RegG, a CcpA homolog, participates in regulation of amylase-binding protein A gene (abpA) expression in Streptococcus gordonii. J Bacteriol 183: 35213525.
  • Sato, Y., Yamamoto, Y., Kizaki, H., and Kuramitsu, H.K. (1993) Isolation, characterization and sequence analysis of the scrK gene encoding fructokinase of Streptococcus mutans. J Gen Microbiol 139: 921927.
  • Shaper, M., Hollingshead, S.K., Benjamin, W.H., Jr, and Briles, D.E. (2004) PspA protects Streptococcus pneumoniae from killing by apolactoferrin, and antibody to PspA enhances killing of pneumococci by apolactoferrin [corrected]. Infect Immun 72: 50315040.
  • Simpson, C.L., and Russell, R.R. (1998) Identification of a homolog of CcpA catabolite repressor protein in Streptococcus mutans. Infect Immun 66: 20852092.
  • Smith, H. (2000) Questions about the behaviour of bacterial pathogens in vivo. Philos Trans R Soc Lond B Biol Sci 355: 551564.
  • Stulke, J., and Hillen, W. (2000) Regulation of carbon catabolism in Bacillus species. Annu Rev Microbiol 54: 849880.
  • Sweeney, N.J., Klemm, P., McCormick, B.A., Moller-Nielsen, E., Utley, M., Schembri, M.A., et al. (1996a) The Escherichia coli K-12 gntP gene allows E. coli F-18 to occupy a distinct nutritional niche in the streptomycin-treated mouse large intestine. Infect Immun 64: 34973503.
  • Sweeney, N.J., Laux, D.C., and Cohen, P.S. (1996b) Escherichia coli F-18 and E. coli K-12 eda mutants do not colonize the streptomycin-treated mouse large intestine. Infect Immun 64: 35043511.
  • Tanzer, J.M., Thompson, A., Wen, Z.T., and Burne, R.A. (2006) Streptococcus mutans: fructose transport, xylitol resistance, and virulence. J Dent Res 85: 369373.
  • Tchawa Yimga, M., Leatham, M.P., Allen, J.H., Laux, D.C., Conway, T., and Cohen, P.S. (2006) Role of gluconeogenesis and the tricarboxylic acid cycle in the virulence of Salmonella enterica serovar Typhimurium in BALB/c mice. Infect Immun 74: 11301140.
  • Titgemeyer, F., and Hillen, W. (2002) Global control of sugar metabolism: a gram-positive solution. Antonie Van Leeuwenhoek 82: 5971.
  • Velayudhan, J., Jones, M.A., Barrow, P.A., and Kelly, D.J. (2004) l-Serine catabolism via an oxygen-labile l-serine dehydratase is essential for colonization of the avian gut by Campylobacter jejuni. Infect Immun 72: 260268.
  • Viana, R., Perez-Martinez, G., Deutscher, J., and Monedero, V. (2005) The glycolytic genes pfk and pyk from Lactobacillus casei are induced by sugars transported by the phosphoenolpyruvate: sugar phosphotransferase system and repressed by CcpA. Arch Microbiol 183: 385393.
  • Wang, B., and Kuramitsu, H.K. (2003) Control of enzyme IIscr and sucrose-6-phosphate hydrolase activities in Streptococcus mutans by transcriptional repressor ScrR binding to the cis-active determinants of the scr regulon. J Bacteriol 185: 57915799.
  • Weickert, M.J., and Adhya, S. (1992) A family of bacterial regulators homologous to Gal and Lac repressors. J Biol Chem 267: 1586915874.