SEARCH

SEARCH BY CITATION

References

  • Ades, S.E. (2004) Proteolysis: adaptor, adaptor, catch me a catch. Curr Biol 14: R924R926.
  • Alper, H., Miyaoku, K., and Stephanopoulos, G. (2005) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23: 612616.
  • Atlung, T., and Bronsted, L. (1994) Role of the transcriptional activator AppY in regulation of the cyx appA operon of Escherichia coli by anaerobiosis, phosphate starvation, and growth phase. J Bacteriol 176: 54145422.
  • Atlung, T., Nielsen, A., and Hansen, F.G. (1989) Isolation, characterization, and nucleotide sequence of appY, a regulatory gene for growth-phase-dependent gene expression in Escherichia coli. J Bacteriol 171: 16831691.
  • Atlung, T., Sund, S., Olesen, K., and Brondsted, L. (1996) The histone-like protein H-NS acts as a transcriptional repressor for expression of the anaerobic and growth phase activator AppY of Escherichia coli. J Bacteriol 178: 34183425.
  • Bearson, S.M.D., Benjamin, W.H., Swords, W.E., Jr, and Foster, J.W. (1996) Acid shock induction of RpoS is mediated by the mouse virulence gene mviA of Salmonella typhimurium. J Bacteriol 178: 25722579.
  • Becker, G., Klauck, E., and Hengge-Aronis, R. (2000) The response regulator RssB, a recognition factor for σS proteolysis in Escherichia coli, can act like an anti-σS factor. Mol Microbiol 35: 657666.
  • Benjamin, W.H.J., Yother, J., Hall, P., and Briles, D.E. (1991) The Salmonella typhimurium locus mviA regulates virulence in Itys but not Ityr mice: functional mviA results in avirulence; mutant (nonfunctional) mviA results in virulence. J Exp Med 174: 10731083.
  • Bouché, S., Klauck, E., Fischer, D., Lucassen, M., Jung, K., and Hengge-Aronis, R. (1998) Regulation of RssB-dependent proteolysis in Escherichia coli: a role for acetyl phosphate in a response regulator-controlled process. Mol Microbiol 27: 787795.
  • Bougdour, A., and Gottesman, S. (2007) ppGpp regulation of RpoS degradation via an anti-adaptor protein IraP. Proc Natl Acad Sci USA 104: 1289612901.
  • Bougdour, A., Lelong, C., and Geiselmann, J. (2004) Crl, a low temperature-induced protein in Escherichia coli that binds directly to the stationary phase sigma subunit of RNA polymerase. J Biol Chem 279: 1954019550.
  • Bougdour, A., Wickner, S., and Gottesman, S. (2006) Modulating RssB activity: IraP, a novel regulator of σS stability in Escherichia coli. Genes Dev 20: 884897.
  • Brondsted, L., and Atlung, T. (1994) Anaerobic regulation of the hydrogenase 1 (hya) operon of Escherichia coli. J Bacteriol 176: 54235428.
  • Brondsted, L., and Atlung, T. (1996) Effect of growth conditions on expression of the acid phosphatase (cyx-appA) operon and the appY gene, which encodes a transcriptional activator of Escherichia coli. J Bacteriol 178: 15561564.
  • Brown, L., and Elliott, T. (1996) Efficient translation of the RpoS sigma factor in Salmonella typhimurium requires Host Factor I, an RNA-binding protein encoded by the hfq gene. J Bacteriol 178: 37633770.
  • Court, D.L., Swaminathan, S., Yu, D., Wilson, H., Baker, T., Bubunenko, M., et al. (2003) Mini-lambda: a tractable system for chromosome and BAC engineering. Gene 315: 6369.
  • Cunning, C., and Elliott, T. (1999) RpoS synthesis is growth rate regulated in Salmonella typhimurium, but its turnover is not dependent on acetyl phosphate synthesis or PTS function. J Bacteriol 181: 48534862.
  • Fredriksson, A., Ballesteros, M., Peterson, C.N., Persson, O., Silhavy, T.J., and Nystrom, T. (2007) Decline in ribosomal fidelity contributes to the accumulation and stabilization of the master stress response regulator σS upon carbon starvation. Genes Dev 21: 862874.
  • Gaal, T., Mandel, M.J., Silhavy, T.J., and Gourse, R.L. (2006) Crl facilitates RNA polymerase holoenzyme formation. J Bacteriol 188: 79667970.
  • Garcia-Vescovi, E., Soncini, F.C., and Groisman, E.A. (1996) Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 84: 165174.
  • Gottesman, S. (2003) Proteolysis in bacterial regulatory circuits. Annu Rev Cell Dev Biol 19: 565587.
  • Grimaud, R., Kessel, M., Beuron, F., Stevens, A.C., and Maurizi, M.R. (1998) Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP. J Biol Chem 273: 1247612481.
  • Groisman, E.A. (2001) The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol 183: 18351842.
  • Hemmi, H., Ohnuma, S., Nagaoka, K., and Nishino, T. (1998) Identification of genes affecting lycopene formation in Escherichia coli transformed with carotenoid biosynthetic genes: candidates for early in isoprenoid biosynthesis. J Biochem (Tokyo) 123: 10881096.
  • Hengge-Aronis, R. (2002) Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66: 373395.
  • Hershko, A., and Ciechanover, A. (1998) The Ubiquitin system. Annu Rev Biochem 67: 425479.
  • Hmiel, S.P., Snavely, M.D., Miller, C.G., and Maguire, M.E. (1986) Magnesium transport in Salmonella typhimurium: characterization of magnesium influx and cloning of a transport gene. J Bacteriol 168: 14441450.
  • Jenal, U., and Hengge-Aronis, R. (2003) Regulation by proteolysis in bacterial cells. Curr Opin Microbiol 6: 163172.
  • Jin, Y.-S., and Stephanopoulos, G. (2007) Multi-dimensional gene target search for improving lycopene biosynthesis. Metabolic Engineering 9: 337347.
  • Kang, M.J., Lee, Y.M., Yoon, S.H., Kim, J.H., Ock, S.W., Jung, K.H., et al. (2005) Identification of genes affecting lycopene accumulation in Escherichia coli using a shot-gun method. Biotechnol Bioeng 91: 636642.
  • Kato, A., and Groisman, E.A. (2004) Connecting two-component regulatory systems by a protein that protects a response regulator from dephosphorylation by its cognate sensor. Genes Dev 18: 23022313.
  • Kox, L.F., Wosten, M.M., and Groisman, E.A. (2000) A small protein that mediates the activation of a two-component system by another two-component system. EMBO J 19: 18611872.
  • Lacour, S., and Landini, P. (2004) SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of sigmaS-dependent genes and identification of their promoter sequences. J Bacteriol 186: 71867195.
  • Lange, R., and Hengge-Aronis, R. (1994) The cellular concentration of the σS subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Genes Dev 8: 16001612.
  • Lindsey, D.F., Mullin, D.A., and Walker, J.R. (1989) Characterization of the cryptic lambdoid prophage DLP12 of Escherichi coli and overlap of the DLP12 integrase gene with the tRNA gene. Argu J Bacteriol 171: 61976205.
  • Loewen, P.C., and Hengge-Aronis, R. (1994) The role of the sigma factor σS (KatF) in bacterial global regulation. Annu Rev Microbiol 48: 5380.
  • Loewen, P.C., Hu, B., Strutinsky, J., and Sparling, R. (1998) Regulation in the rpoS regulon of Escherichia coli. Can J Microbiol 44: 707717.
  • Majdalani, N., Cunning, C., Sledjeski, D., Elliott, T., and Gottesman, S. (1998) DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proc Natl Acad Sci USA 95: 1246212467.
  • Majdalani, N., Chen, S., Murrow, J., St. John, K., and Gottesman, S. (2001) Regulation of RpoS by a novel small RNA: the characterization of RprA. Mol Microbiol 39: 13821394.
  • Majdalani, N., Heck, M., Stout, V., and Gottesman, S. (2005) Role of RcsF in signaling to the Rcs phosphorelay in Escherichia coli. J Bacteriol 187: 67706778.
  • Mandel, M.J., and Silhavy, T.J. (2005) Starvation for different nutrients in Escherichia coli results in differential modulation of RpoS levels and stability. J Bacteriol 187: 434442.
  • Maurizi, M.R., Thompson, M.W., Singh, W.K., and Kim, S.-H. (1994) Endopeptidase Clp: the ATP-dependent Clp protease from Escherichia coli. Methods Enzymol 244: 314331.
  • Mika, F., and Hengge, R. (2005) A two-component phosphotransfer network involving ArcB, ArcA, and RssB coordinates synthesis and proteolysis of σS (RpoS) in E. coli. Genes Dev 19: 27702781.
  • Miller, J.H. (1972) Experiments in Bacterial Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  • Minagawa, S., Ogasawara, H., Kato, A., Yamamoto, K., Eguchi, Y., Oshima, T., et al. (2003) Identification and molecular characterization of the Mg2+ stimulon of Escherichia coli. J Bacteriol 185: 36963702.
  • Muffler, A., Fischer, D., Altuvia, S., Storz, G., and Hengge-Aronis, R. (1996) The response regulator RssB controls stability of the σs subunit of RNA-polymerase in Escherichia coli. EMBO J 15: 13331339.
  • Peterson, C.N., Ruiz, N., and Silhavy, T.J. (2004) RpoS proteolysis is regulated by a mechanism that does not require the SprE (RssB) response regulator phosphorylation site. J Bacteriol 186: 74037410.
  • Powell, B.S., Rivas, M.P., Court, D.L., Nakamura, Y., Rivas, M.P., and Turnbough, C.L.J. (1994) Rapid confirmation of single copy lambda prophage integration by PCR. Nucleic Acids Res 22: 57655766.
  • Pratt, L.A., and Silhavy, T.J. (1996) The response regulator SprE controls the stability of RpoS. Proc Natl Acad Sci USA 93: 24882492.
  • Pratt, L.A., and Silhavy, T.J. (1998) Crl stimulates RpoS activity during stationary phase. Mol Microbiol 29: 12251236.
  • Ranquet, C., and Gottesman, S. (2007) Translational regulation of the Escherichia coli stress factor RpoS: a role for SsrA and Lon. J Bacteriol 189: 48724879.
  • Ruiz, N., and Silhavy, T.J. (2003) Constitutive activation of the Escherichia coli Pho regulon upregulates rpoS translation in an Hfq-dependent fashion. J Bacteriol 185: 59845992.
  • Ruiz, N., Peterson, C.N., and Silhavy, T.J. (2001) RpoS-dependent transcriptional control of sprE: regulatory feedback loop. J Bacteriol 183: 59745981.
  • Schweder, T., Lee, K.-H., Lomovskaya, O., and Matin, A. (1996) Regulation of Escherichia coli starvation sigma factor (σs) by ClpXP protease. J Bacteriol 178: 470476.
  • Sharma, S., Hoskins, J.R., and Wickner, S. (2005) Binding and degradation of heterodimeric substrates by ClpAP and ClpXP. J Biol Chem 280: 54495455.
  • Simons, R.W., Houman, F., and Kleckner, N. (1987) Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53: 8596.
  • Tu, X., Latifi, T., Bougdour, A., Gottesman, S., and Groisman, E.A. (2006) The PhoP/PhoQ two-component system stabilizes the alternative sigma factor RpoS in Salmonella enterica. Proc Natl Acad Sci USA 103: 1350313508.
  • Ulbrandt, N.D., Newitt, J.A., and Bernstein, H.D. (1997) The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell 88: 187196.
  • Yang, H., Wolff, E., Kim, M., Diep, A., and Miller, J.H. (2004) Identification of mutator genes and mutational pathways in Escherichia coli using a multicopy cloning approach. Molec Microbiol 53: 283295.
  • Yu, D.G., Ellis, H.M., Lee, E.C., Jenkins, N.A., Copeland, N.G., and Court, D.L. (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97: 59785983.
  • Zgurskaya, H.I., Keyhan, M., and Matin, A. (1997) The sigma σS level in starving Escherichia coli cells increases solely as a result of its increased stability, despite decreased synthesis. Mol Microbiol 24: 643651.
  • Zheng, M., Wang, X., Templeton, L.J., Smulski, D.R., LaRossa, R.A., and Storz, G. (2001) DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183: 45624570.
  • Zhou, Y.-N., and Gottesman, S. (1998) Regulation of proteolysis of the stationary-phase sigma factor RpoS. J Bacteriol 180: 11541158.
  • Zhou, Y., and Gottesman, S. (2006) Modes of regulation of RpoS by H-NS. J Bacteriol 188: 70227025.
  • Zhou, Y., Gottesman, S., Hoskins, J.R., Maurizi, M.R., and Wickner, S. (2001) The RssB response regulator directly targets σS for degradation by ClpXP. Genes Dev 15: 627637.
  • Zwir, I., Shin, D., Kato, A.N., Ishino, K., Latifi, T., Solomon, F., et al. (2005) Dissecting the PhoP regulatory network of Escherichia coli and Salmonella enterica. Proc Natl Acad Sci USA 102: 28622867.