SEARCH

SEARCH BY CITATION

References

  • Aguiar, J.C., Albrecht, G.R., Cegielski, P., Greenwood, B.M., Jensen, J.B., Lallinger, G., et al. (1992) Agglutination of Plasmodium falciparum-infected erythrocytes from east and west African isolates by human sera from distant geographical regions. Am J Trop Med Hyg 47: 621632.
  • Albrecht, L., Merino, E.F., Hoffmann, E.H., Ferreira, M.U., De Mattos Ferreira, R.G., Osakabe, A.L. et al. (2006) Extense variant gene family repertoire overlap in Western Amazon Plasmodium falciparum isolates. Mol Biochem Parasitol 150: 157165.
  • Barragan, A., Kremsner, P.G., Weiss, W., Wahlgren, M., and Carlson, J. (1998) Age-related buildup of humoral immunity against epitopes for rosette formation and agglutination in African areas of malaria endemicity. Infect Immun 66: 47834787.
  • Barry, A.E., Leliwa-Sytek, A., Tavul, L., Imrie, H., Migot-Nabias, F., Brown, S.M., et al. (2007) Population genomics of the immune evasion (var) genes of Plasmodium falciparum. PLoS Pathog 3: e34.
  • Baruch, D.I., Pasloske, B.L., Singh, H.B., Bi, X., Ma, X.C., Feldman, M., et al. (1995) Cloning the Plasmodium falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82: 7787.
  • Baruch, D.I., Rogerson, S.J., and Cooke, B.M. (2002) Asexual blood stages of malaria antigens: cytoadherence. Chem Immunol 80: 144162.
  • Bockhorst, J., Lu, F., Janes, J.H., Keebler, J., Gamain, B., Awadalla, P., et al. (2007) Structural polymorphism and diversifying selection on the pregnancy malaria vaccine candidate VAR2CSA. Mol Biochem Parasitol 155: 103112.
  • Brayton, K.A., Palmer, G.H., Lundgren, A., Yi, J., and Barbet, A.F. (2002) Antigenic variation of Anaplasma marginale msp2 occurs by combinatorial gene conversion. Mol Microbiol 43: 11511159.
  • Bull, P.C., Lowe, B.S., Kortok, M., Molyneux, C.S., Newbold, C.I., and Marsh, K. (1998) Parasite antigens on the infected red cell are targets for naturally acquired immunity to malaria. Nat Med 4: 358360.
  • Bull, P.C., Kortok, M., Kai, O., Ndungu, F., Ross, A., Lowe, B.S., et al. (2000) Plasmodium falciparum-infected erythrocytes: agglutination by diverse Kenyan plasma is associated with severe disease and young host age. J Infect Dis 182: 252259.
  • Bull, P.C., Lowe, B.S., Kaleli, N., Njuga, F., Kortok, M., Ross, A., et al. (2002) Plasmodium falciparum infections are associated with agglutinating antibodies to parasite infected erythrocyte surface antigens among healthy Kenyan children. J Infect Dis 185: 16881691.
  • Bull, P.C., Berriman, M., Kyes, S., Quail, M.A., Hall, N., Kortok, M.M., et al. (2005) Plasmodium falciparum variant surface antigen expression patterns during malaria. PLoS Pathog 1: e26.
  • Bull, P.C., Kyes, S., Buckee, C.O., Montgomery, J., Kortok, M.M., Newbold, C.I., et al. (2007) An approach to classifying sequence tags sampled from Plasmodium falciparum var genes. Mol Biochem Parasitol 154: 98102.
  • Carver, T.J., Rutherford, K.M., Berriman, M., Rajandream, M.A., Barrell, B.G., and Parkhill, J. (2005) ACT: the Artemis Comparison Tool. Bioinformatics 21: 34223423.
  • Chen, Q., Barragan, A., Fernandez, V., Sundstrom, A., Schlichtherle, M., Sahlen, A., et al. (1998) Identification of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) as the rosetting ligand of the malaria parasite P. falciparum. J Exp Med 187: 1523.
  • Craig, A., and Scherf, A. (2001) Molecules on the surface of the Plasmodium falciparum infected erythrocyte and their role in malaria pathogenesis and immune evasion. Mol Biochem Parasitol 115: 129143.
  • Deitsch, K.W., Moxon, E.R., and Wellems, T.E. (1997) Shared themes of antigenic variation and virulence in bacterial, protozoal and fungal infections. Microbiol Mol Biol Rev 61: 281293.
  • DePristo, M.A., Zilversmit, M.M., and Hartl, D.L. (2006) On the abundance, amino acid composition, and evolutionary dynamics of low-complexity regions in proteins. Gene 378: 1930.
  • Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 17921797.
  • Flick, K., and Chen, Q. (2004) var genes, PfEMP1 and the human host. Mol Biochem Parasitol 134: 39.
  • Forsyth, K.P., Philip, G., Smith, T., Kum, E., Southwell, B., and Brown, G.V. (1989) Diversity of antigens expressed on the surface of erythrocytes infected with mature Plasmodium falciparum parasites in Papua New Guinea. Am J Trop Med Hyg 41: 259265.
  • Fowler, E.V., Peters, J.M., Gatton, M.L., Chen, N., and Cheng, Q. (2002) Genetic diversity of the DBLalpha region in Plasmodium falciparum var genes among Asia-Pacific isolates. Mol Biochem Parasitol 120: 117126.
  • Freitas-Junior, L.H., Bottius, E., Pirrit, L.A., Deitsch, K.W., Scheidig, C., Guinet, F., et al. (2000) Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum. Nature 407: 10181022.
  • Fruchterman, T.M.J., and Reingold, E.M. (1991) Graph drawing by force-directed placement. Softw, Pract Exp 21: 11291164.
  • Gardner, M.J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R.W., et al. (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419: 498511.
  • Gibbs, C.P., Reimann, B.Y., Schultz, E., Kaufmann, A., Haas, R., and Meyer, T.F. (1989) Reassortment of pilin genes in Neisseria gonorrhoeae occurs by two distinct mechanisms. Nature 338: 651652.
  • Giha, H.A., Staalsoe, T., Dodoo, D., Roper, C., Satti, G.M., Arnot, D.E., et al. (2000) Antibodies to variable Plasmodium falciparum-infected erythrocyte surface antigens are associated with protection from novel malaria infections. Immunol Lett 71: 117126.
  • Gupta, S., Maiden, M.C.J., Feavers, I.M., Nee, S., May, R.M., and Anderson, R.M. (1996) The maintainance of strain structure in populations of recombining infectious agents. Nat Med 2: 437442.
  • Haake, D.A., Suchard, M.A., Kelley, M.M., Dundoo, M., Alt, D.P., and Zuerner, R.L. (2004) Molecular evolution and mosaicism of leptospiral outer membrane proteins involves horizontal DNA transfer. J Bacteriol 186: 28182828.
  • Holmes, E.C., Urwin, R., and Maiden, M.C. (1999) The influence of recombination on the population structure and evolution of the human pathogen Neisseria meningitidis. Mol Biol Evol 16: 741749.
  • Horrocks, P., Pinches, R., Christodoulou, Z., Kyes, S.A., and Newbold, C.I. (2004) Variable var transition rates underlie antigenic variation in malaria. Proc Natl Acad Sci USA 101: 1112911134.
  • Iqbal, J., Perlmann, P., and Berzins, K. (1993) Serological diversity of antigens expressed on the surface of erythrocytes infected with Plasmodium falciparum. Trans R Soc Trop Med Hyg 87: 583588.
  • Jensen, A.T., Magistrado, P., Sharp, S., Joergensen, L., Lavstsen, T., Chiucchiuini, A., et al. (2004) Plasmodium falciparum associated with severe childhood malaria preferentially expresses PfEMP1 encoded by group A var genes. J Exp Med 199: 11791190.
  • Kaestli, M., Cockburn, I.A., Cortes, A., Baea, K., Rowe, J.A., and Beck, H.P. (2006) Virulence of malaria is associated with differential expression of Plasmodium falciparum var gene subgroups in a case–control study. J Infect Dis 193: 15671574.
  • Kamada, T., and Kawai, S. (1989) An algorithm for drawing general undirected graphs. Inf Process Lett 31: 715.
  • Kinyanjui, S.M., Mwangi, T., Bull, P., Marsh, K., and Newbold, C. (2004) Protection against clinical malaria by heterologous immunoglobulin G antibodies against malaria-infected erythrocyte variant surface antigens requires interaction with asymptomatic infections. J Infect Dis 190: 15271533.
  • Kirchgatter, K., Del Portillo, H.A. (2002) Association of severe noncerebral Plasmodium falciparum malaria in Brazil with expressed PfEMP1 DBL1α sequences lacking cysteine residues. Mol Med 8: 1623.
  • Klein, J. (1987) Origin of major histocompatability complex polymorphism: The trans-species hypothesis. Humm Immun 19: 155162.
  • Kraemer, S.M., and Smith, J.D. (2003) Evidence for the importance of genetic structuring to the structural and functional specialization of the Plasmodium falciparum var gene family. Mol Microbiol 50: 15271538.
  • Kraemer, S.M., Kyes, S.A., Aggarwal, G., Springer, A.L., Nelson, S.O., Christodoulou, Z., et al. (2007) Patterns of gene recombination shape var gene repertoires in Plasmodium falciparum: comparisons of geographically diverse isolates. BMC Genomics 8: 45.
  • Kumar, S., Tamura, K., and Nei, M. (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5: 150163.
  • Kyes, S., Horrocks, P., and Newbold, C. (2001) Antigenic variation at the infected red cell surface in malaria. Annu Rev Microbiol 55: 673707.
  • Kyriacou, H.M., Stone, G.N., Challis, R.J., Raza, A., Lyke, K.E., Thera, M.A., et al. (2006) Differential var gene transcription in Plasmodium falciparum isolates from patients with cerebral malaria compared to hyperparasitaemia. Mol Biochem Parasitol 150: 211218.
  • Lavstsen, T., Salanti, A., Jensen, A.T., Arnot, D.E., and Theander, T.G. (2003) Sub-grouping of Plasmodium falciparum 3D7 var genes based on sequence analysis of coding and non-coding regions. Malar J 2: 27.
  • McGraw, E.A., Li, J., Selander, R.K., and Whittam, T.S. (1999) Molecular evolution and mosaic structure of alpha, beta, and gamma intimins of pathogenic Escherichia coli. Mol Biol Evol 16: 1222.
  • McKenzie, F.E., Ferreira, M.U., Baird, J.K., Snounou, G., and Bossert, W.H. (2001) Meiotic recombination, cross-reactivity, and persistence in Plasmodium falciparum. Evolution 55: 12991307.
  • Marsh, K. (1992) Malaria-a neglected disease? Parasitology 104: S53S69.
  • Marsh, K., and Howard, R.J. (1986) Antigens induced on erythrocytes by Plasmodium falciparum: expression of diverse and conserved determinants. Science 231: 150153.
  • Mauricio, I.L., Gaunt, M.W., Stothard, J.R., and Miles, M.A. (2007) Glycoprotein 63 (gp63) genes show gene conversion and reveal the evolution of Old World Leishmania. Int J Parasitol 37: 565576.
  • Montgomery, J., Mphande, F.A., Berriman, M., Pain, A., Rogerson, S.J., Taylor, T.E., et al. (2007) Differential var gene expression in the organs of patients dying of falciparum malaria. Mol Microbiol 65: 959967.
  • Newbold, C.I., Pinches, R., Roberts, D.J., and Marsh, K. (1992) Plasmodium falciparum: the human agglutinating antibody response to the infected red cell surface is predominantly variant specific. Exp Parasitol 75: 281292.
  • Nielsen, M.A., Staalsoe, T., Kurtzhals, J.A., Goka, B.Q., Dodoo, D., Alifrangis, M., et al. (2002) Plasmodium falciparum variant surface antigen expression varies between isolates causing severe and nonsevere malaria and is modified by acquired immunity. J Immunol 168: 34443450.
  • Nielsen, M.A., Vestergaard, L.S., Lusingu, J., Kurtzhals, J.A., Giha, H.A., Grevstad, B., et al. (2004) Geographical and temporal conservation of antibody recognition of Plasmodium falciparum variant surface antigens. Infect Immun 72: 35313535.
  • Normark, J., Nilsson, D., Ribacke, U., Winter, G., Moll, K., Wheelock, C.E., et al. (2007) PfEMP1-DBL1alpha amino acid motifs in severe disease states of Plasmodium falciparum malaria. Proc Natl Acad Sci USA 104: 1583515840.
  • Reeder, J.C., Rogerson, S.J., Al-Yaman, F., Anders, R.F., Coppel, R.L., Novakovic, S., et al. (1994) Diversity of agglutinating phenotype, cytoadherence, and rosette-forming characteristics of Plasmodium falciparum isolates from Papua New Guinean children. Am J Trop Med Hyg 51: 4555.
  • Roberts, D.J., Craig, A.G., Berendt, A.R., Pinches, R., Nash, G., Marsh, K., et al. (1992) Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature 357: 689692.
  • Robinson, B.A., Welch, T.L., and Smith, J.D. (2003) Widespread functional specialization of Plasmodium falciparum erythrocyte membrane protein 1 family members to bind CD36 analysed across a parasite genome. Mol Microbiol 47: 12651278.
  • Rottmann, M., Lavstsen, T., Mugasa, J.P., Kaestli, M., Jensen, A.T., Muller, D., et al. (2006) Differential expression of var gene groups is associated with morbidity caused by Plasmodium falciparum infection in Tanzanian children. Infect Immun 74: 39043911.
  • Rowe, J.A., Moulds, J.M., Newbold, C.I., and Miller, L.H. (1997) Plasmodium falciparum rosetting is mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. Nature 388: 292295.
  • Rowe, J.A., Kyes, S.A., Rogerson, S.J., Babiker, H.A., and Raza, A. (2002) Identification of a conserved Plasmodium falciparum var gene implicated in malaria in pregnancy. J Infect Dis 185: 12071211.
  • Salanti, A., Dahlback, M., Turner, L., Nielsen, M.A., Barfod, L., Magistrado, P., et al. (2004) Evidence for the involvement of VAR2CSA in pregnancy-associated malaria. J Exp Med 200: 11971203.
  • Santoyo, G., and Romero, D. (2005) Gene conversion and concerted evolution in bacterial genomes. FEMS Microbiol Rev 29: 169183.
  • Smith, J.D., Chitnis, C.E., Craig, A.G., Roberts, D.J., Hudson-Taylor, D.E., Peterson, D.S., et al. (1995) Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82: 101110.
  • Smith, J.D., Subramanian, G., Gamain, B., Baruch, D.I., and Miller, L.H. (2000) Classification of adhesive domains in the Plasmodium falciparum erythrocyte membrane protein 1 family. Mol Biochem Parasitol 110: 293310.
  • Su, X., Heatwole, V.M., Wertheimer, S.P., Guinet, F., Herrfeldt, J.A., Peterson, D.S., et al. (1995) The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82: 89100.
  • Tami, A., Ord, R., Targett, G.A., and Sutherland, C.J. (2003) Sympatric Plasmodium falciparum isolates from Venezuela have structured var gene repertoires. Malar J 2: 7.
  • Taylor, H.M., Kyes, S.A., and Newbold, C.I. (2000a) var gene diversity in Plasmodium falciparum is generated by frequent recombination events. Mol Biochem Parasitol 110: 391397.
  • Taylor, H.M., Kyes, S.A., Harris, D., Kriek, N., and Newbold, C.I. (2000b) A study of var gene transcription in vitro using universal var gene primers. Mol Biochem Parasitol 105: 1323.
  • Trimnell, A.R., Kraemer, S.M., Mukherjee, S., Phippard, D.J., Janes, J.H., Flamoe, E., et al. (2006) Global genetic diversity and evolution of var genes associated with placental and severe childhood malaria. Mol Biochem Parasitol 148: 169180.
  • Urwin, R., Holmes, E.C., Fox, A.J., Derrick, J.P., and Maiden, M.C. (2002) Phylogenetic evidence for frequent positive selection and recombination in the meningococcal surface antigen PorB. Mol Biol Evol 19: 16861694.
  • Ward, C.P., Clottey, G.T., Dorris, M., Ji, D.D., and Arnot, D.E. (1999) Analysis of Plasmodium falciparum PfEMP-1/var genes suggests that recombination rearranges constrained sequences. Mol Biochem Parasitol 102: 167177.
  • Winter, G., Chen, Q., Flick, K., Kremsner, P., Fernandez, V., and Wahlgren, M. (2003) The 3D7var5.2 (var COMMON) type var gene family is commonly expressed in non-placental Plasmodium falciparum malaria. Mol Biochem Parasitol 127: 179191.