SEARCH

SEARCH BY CITATION

References

  • Ames, S.K., Frankema, N., and Kenney, L.J. (1999) C-terminal DNA binding stimulates N-terminal phosphorylation of the outer membrane protein regulator OmpR from Escherichia coli. Proc Natl Acad Sci USA 96: 1179211797.
  • Anderson, J.C., Clarke, E.J., Arkin, A.P., and Voigt, C.A. (2006) Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol 355: 619627.
  • Appleby, J.L., and Bourret, R.B. (1998) Proposed signal transduction role for conserved CheY residue Thr87, a member of the response regulator active-site quintet. J Bacteriol 180: 35633569.
  • Ashby, M.K. (2004) Survey of the number of two-component response regulator genes in the complete and annotated genome sequences of prokaryotes. FEMS Microbiol Lett 231: 277281.
  • Bachhawat, P., Swapna, G.V., Montelione, G.T., and Stock, A.M. (2005) Mechanism of activation for transcription factor PhoB suggested by different modes of dimerization in the inactive and active states. Structure 13: 13531363.
  • Birck, C., Mourey, L., Gouet, P., Fabry, B., Schumacher, J., Rousseau, P., et al. (1999) Conformational changes induced by phosphorylation of the FixJ receiver domain. Structure 7: 15051515.
  • Bird, T.H., Du, S., and Bauer, C.E. (1999) Autophosphorylation, phosphotransfer, and DNA-binding properties of the RegB/RegA two-component regulatory system in Rhodobacter capsulatus. J Biol Chem 274: 1634316348.
  • Boesch, K.C., Silversmith, R.E., and Bourret, R.B. (2000) Isolation and characterization of nonchemotactic CheZ mutants of Escherichia coli. J Bacteriol 182: 35443552.
  • Burroughs, A.M., Allen, K.N., Dunaway-Mariano, D., and Aravind, L. (2006) Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. J Mol Biol 361: 10031034.
  • Campbell, P.M., Singh, A., Williams, F.J., Frantz, K., Ulfu, A.S., Kelley, G.G., and Der, C.J. (2005) Genetic and pharmacologic dissection of ras effector utilization in oncogenesis. Methods Enzymol 407: 195217.
  • Catlett, N.L., Yoder, O.C., and Turgeon, B.G. (2003) Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot Cell 2: 11511161.
  • Cavicchioli, R., Schroder, I., Constanti, M., and Gunsalus, R.P. (1995) The NarX and NarQ sensor-transmitter proteins of Escherichia coli each require two conserved histidines for nitrate-dependent signal transduction to NarL. J Bacteriol 177: 24162424.
  • Cho, H., Wang, W., Kim, R., Yokota, H., Damo, S., Kim, S.H., et al. (2001) BeF3- acts as a phosphate analog in proteins phosphorylated on aspartate: structure of a BeF3- complex with phosphoserine phosphatase. Proc Natl Acad Sci USA 98: 85258530.
  • Comolli, J.C., Carl, A.J., Hall, C., and Donohue, T. (2002) Transcriptional activation of the Rhodobacter sphaeroides cytochrome c2 gene P2 promoter by the response regulator PrrA. J Bacteriol 184: 390399.
  • Dahl, M.K., Msadek, T., Kunst, F., and Rapoport, G. (1992) The phosphorylation state of the DegU response regulator acts as a molecular switch allowing either degradative enzyme synthesis or expression of genetic competence in Bacillus subtilis. J Biol Chem 267: 1450914514.
  • DeLano, W.L. (2002) The PyMOL molecular graphics system.[WWW document]. URL http://www.pymol.org
  • Downward, J. (2001) The ins and outs of signalling. Nature 411: 759762.
  • Dutta, R., Qin, L., and Inouye, M. (1999) Histidine kinases: diversity of domain organization. Mol Microbiol 34: 633640.
  • Feher, V.A., and Cavanagh, J. (1999) Millisecond-timescale motions contribute to the function of the bacterial response regulator protein Spo0F. Nature 400: 289293.
  • Fisher, S.L., Kim, S.K., Wanner, B.L., and Walsh, C.T. (1996) Kinetic comparison of the specificity of the vancomycin resistance VanS for two response regulators, VanR and PhoB. Biochemistry 35: 47324740.
  • Gardino, A.K., Volkman, B.F., Cho, H.S., Lee, S.Y., Wemmer, D.E., and Kern, D. (2003) The NMR solution structure of BeF3- activated Spo0F reveals the conformational switch in a phosphorelay system. J Mol Biol 331: 245254.
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., and Bairoch, A. (2005) Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook. Walker, J.M. (ed.). Totowa, NJ: Humana Press, pp. 571607.
  • Georgellis, D., Kwon, O., De Wulf, P., and Lin, E.C. (1998) Signal decay through a reverse phosphorelay in the Arc two-component signal transduction system. J Biol Chem 273: 3286432869.
  • Goldman, B.S., Nierman, W.C., Kaiser, D., Slater, S.C., Durkin, A.S., Eisen, J.A., et al. (2006) Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Acad Sci USA 103: 1520015205.
  • Goudreau, P.N., Lee, P.J., and Stock, A.M. (1998) Stabilization of the phospho-aspartyl residue in a two-component signal transduction system in Thermotoga maritima. Biochemistry 37: 1457514584.
  • Grebe, T.W., and Stock, J.B. (1999) The histidine protein kinase superfamily. Adv Microb Physiol 41: 139227.
  • Grimshaw, C.E., Huang, S., Hanstein, C.G., Strauch, M.A., Burbulys, D., Wang, L., et al. (1998) Synergistic kinetic interactions between components of the phosphorelay controlling sporulation in Bacillus subtilis. Biochemistry 37: 13651375.
  • Hastings, C.A., Lee, S.Y., Cho, H.S., Yan, D., Kustu, S., and Wemmer, D.E. (2003) High-resolution solution structure of the beryllofluoride-activated NtrC receiver domain. Biochemistry 42: 90819090.
  • Hess, J.F., Bourret, R.B., Oosawa, K., Matsumura, P., and Simon, M.I. (1988) Protein phosphorylation and bacterial chemotaxis. Cold Spring Harb Symp Quant Biol 53: 4148.
  • Hess, J.F., Bourret, R.B., and Simon, M.I. (1991) Phosphorylation assays for proteins of the two-component regulatory system controlling chemotaxis in Escherichia coli. Methods Enzymol 200: 188204.
  • Hoch, J.A., and Varughese, K.I. (2001) Keeping signals straight in phosphorelay signal transduction. J Bacteriol 183: 49414949.
  • Janiak-Spens, F., Sparling, J.M., Gurfinkel, M., and West, A.H. (1999) Differential stabilities of phosphorylated response regulator domains reflect functional roles of the yeast osmoregulatory SLN1 and SSK1 proteins. J Bacteriol 181: 411417.
  • Janiak-Spens, F., Sparling, D.P., and West, A.H. (2000) Novel role for an HPt domain in stabilizing the phosphorylated state of a response regulator domain. J Bacteriol 182: 66736678.
  • Jimenez-Pearson, M.A., Delany, I., Scarlato, V., and Beier, D. (2005) Phosphate flow in the chemotactic response system of Helicobacter pylori. Microbiology 151: 32993311.
  • Kaern, M., Blake, W.J., and Collins, J.J. (2003) The engineering of gene regulatory networks. Annu Rev Biomed Eng 5: 179206.
  • Keener, J., and Kustu, S. (1988) Protein kinase and phosphoprotein phosphatase activities of nitrogen regulatory proteins NTRB and NTRC of enteric bacteria: roles of the conserved amino-terminal domain of NTRC. Proc Natl Acad Sci USA 85: 49764980.
  • Kobayashi, H., Kaern, M., Araki, M., Chung, K., Gardner, T.S., Cantor, C.R., and Collins, J.J. (2004) Programmable cells: interfacing natural and engineered gene networks. Proc Natl Acad Sci USA 101: 84148419.
  • Lee, S.Y., Cho, H.S., Pelton, J.G., Yan, D., Berry, E.A., and Wemmer, D.E. (2001) Crystal structure of activated CheY. Comparison with other activated receiver domains. J Biol Chem 276: 1642516431.
  • Lewis, R.J., Brannigan, J.A., Muchova, K., Barak, I., and Wilkinson, A.J. (1999) Phosphorylated aspartate in the structure of a response regulator protein. J Mol Biol 294: 915.
  • Li, L., Shakhnovich, E.I., and Mirny, L.A. (2003) Amino acids determining enzyme-substrate specificity in prokaryotic and eukaryotic protein kinases. Proc Natl Acad Sci USA 100: 44634468.
  • Lukat, G.S., Stock, A.M., and Stock, J.B. (1990) Divalent metal ion binding to the CheY protein and its significance to phosphotransfer in bacterial chemotaxis. Biochemistry 29: 54365442.
  • Lukat, G.S., Lee, B.H., Mottonen, J.M., Stock, A.M., and Stock, J.B. (1991) Roles of the highly conserved aspartate and lysine residues in the response regulator of bacterial chemotaxis. J Biol Chem 266: 83488354.
  • Lukat, G.S., McCleary, W.R., Stock, A.M., and Stock, J.B. (1992) Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-donors. Proc Natl Acad Sci USA 89: 718722.
  • Mildvan, A.S. (2004) Inverse thinking about double mutants of enzymes. Biochemistry 43: 1451714520.
  • Mildvan, A.S., Weber, D.J., and Kuliopulos, A. (1992) Quantitative interpretations of double mutations of enzymes. Arch Biochem Biophys 294: 327340.
  • Park, S., Meyer, M., Jones, A.D., Yennawar, H.P., Yennawar, N.H., and Nixon, B.T. (2002) Two-component signaling in the AAA + ATPase DctD: binding Mg2+ and BeF3- selects between alternate dimeric states of the receiver domain. FASEB J 16: 19641966.
  • Perego, M. (2001) A new family of aspartyl phosphate phosphatases targeting the sporulation transcription factor Spo0A of Bacillus subtilis. Mol Microbiol 42: 133143.
  • Pioszak, A.A., and Ninfa, A.J. (2004) Mutations altering the N-terminal receiver domain of NRI (NtrC) that prevent dephosphorylation by the NRII-PII complex in Escherichia coli. J Bacteriol 186: 57305740.
  • Porter, S.L., and Armitage, J.P. (2002) Phosphotransfer in Rhodobacter sphaeroides chemotaxis. J Mol Biol 324: 3545.
  • Sanders, D.A., Gillece-Castro, B.L., Stock, A.M., Burlingame, A.L., and Koshland, D.E., Jr (1989) Identification of the site of phosphorylation of the chemotaxis response regulator protein, CheY. J Biol Chem 264: 2177021778.
  • Segall, J.E., Manson, M.D., and Berg, H.C. (1982) Signal processing times in bacterial chemotaxis. Nature 296: 855857.
  • Sheeler, N.L., MacMillan, S.V., and Nodwell, J.R. (2005) Biochemical activities of the absA two-component system of Streptomyces coelicolor. J Bacteriol 187: 687696.
  • Silversmith, R.E., Appleby, J.L., and Bourret, R.B. (1997) Catalytic mechanism of phosphorylation and dephosphorylation of CheY: kinetic characterization of imidazole phosphates as phosphodonors and the role of acid catalysis. Biochemistry 36: 1496514974.
  • Silversmith, R.E., Smith, J.G., Guanga, G.P., Les, J.T., and Bourret, R.B. (2001) Alteration of a nonconserved active site residue in the chemotaxis response regulator CheY affects phosphorylation and interaction with CheZ. J Biol Chem 276: 1847818484.
  • Silversmith, R.E., Guanga, G.P., Betts, L., Chu, C., Zhao, R., and Bourret, R.B. (2003) CheZ-mediated dephosphorylation of the Escherichia coli chemotaxis response regulator CheY: role for CheY glutamate 89. J Bacteriol 185: 14951502.
  • Silversmith, R.E., Levin, M.D., Schilling, E., and Bourret, R.B. (2008) Kinetic characterization of catalysis by the chemotaxis phosphatase CheZ: modulation of activity by the phosphorylated CheY substrate. J Biol Chem 283: 756765.
  • Skerker, J.M., Prasol, M.S., Perchuk, B.S., Biondi, E.G., and Laub, M.T. (2005) Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biol 3: e334.
  • Sourjik, V., and Schmitt, R. (1998) Phosphotransfer between CheA, CheY1, and CheY2 in the chemotaxis signal transduction chain of Rhizobium meliloti. Biochemistry 37: 23272335.
  • Stewart, R.C. (1993) Activating and inhibitory mutations in the regulatory domain of CheB, the methylesterase in bacterial chemotaxis. J Biol Chem 268: 19211930.
  • Stewart, R.C. (1997) Kinetic characterization of phosphotransfer between CheA and CheY in the bacterial chemotaxis signal transduction pathway. Biochemistry 36: 20302040.
  • Stock, A.M., Martinez-Hackert, E., Rasmussen, B.F., West, A.H., Stock, J.B., Ringe, D., and Petsko, G.A. (1993) Structure of the Mg2+-bound form of CheY and mechanism of phosphoryl transfer in bacterial chemotaxis. Biochemistry 32: 1337513380.
  • Stock, A.M., Robinson, V.L., and Goudreau, P.N. (2000) Two-component signal transduction. Annu Rev Biochem 69: 183215.
  • Swanson, R.V., Sanna, M.G., and Simon, M.I. (1996) Thermostable chemotaxis proteins from the hyperthermophilic bacterium Thermotoga maritima. J Bacteriol 178: 484489.
  • Szurmant, H., Muff, T.J., and Ordal, G.W. (2004) Bacillus subtilis CheC and FliY are members of a novel class of CheY-P-hydrolyzing proteins in the chemotactic signal transduction cascade. J Biol Chem 279: 2178721792.
  • Toro-Roman, A., Mack, T.R., and Stock, A.M. (2005) Structural analysis and solution studies of the activated regulatory domain of the response regulator ArcA: a symmetric dimer mediated by the alpha4-beta5-alpha5 face. J Mol Biol 349: 1126.
  • Tzeng, Y.L., and Hoch, J.A. (1997) Molecular recognition in signal transduction: the interaction surfaces of the Spo0F response regulator with its cognate phosphorelay proteins revealed by alanine scanning mutagenesis. J Mol Biol 272: 200212.
  • Tzeng, Y.L., Feher, V.A., Cavanagh, J., Perego, M., and Hoch, J.A. (1998) Characterization of interactions between a two-component response regulator, Spo0F, and its phosphatase, RapB. Biochemistry 37: 1653816545.
  • Varughese, K.I., Tsigelny, I., and Zhao, H. (2006) The crystal structure of beryllofluoride Spo0F in complex with the phosphotransferase Spo0B represents a phosphotransfer pretransition state. J Bacteriol 188: 49704977.
  • Voigt, C.A. (2006) Genetic parts to program bacteria. Curr Opin Biotechnol 17: 548557.
  • Wang, L., Fabret, C., Kanamaru, K., Stephenson, K., Dartois, V., Perego, M., and Hoch, J.A. (2001a) Dissection of the functional and structural domains of phosphorelay histidine kinase A of Bacillus subtilis. J Bacteriol 183: 27952802.
  • Wang, W., Kim, R., Jancarik, J., Yokota, H., and Kim, S.H. (2001b) Crystal structure of phosphoserine phosphatase from Methanococcus jannaschii, a hyperthermophile, at 1.8 Å resolution. Structure 9: 6571.
  • Wang, W., Cho, H.S., Kim, R., Jancarik, J., Yokota, H., Nguyen, H.H., et al. (2002) Structural characterization of the reaction pathway in phosphoserine phosphatase: crystallographic ‘snapshots’ of intermediate states. J Mol Biol 319: 421431.
  • Weinstein, M., Lois, A.F., Ditta, G.S., and Helinski, D.R. (1993) Mutants of the two-component regulatory protein FixJ of Rhizobium meliloti that have increased activity at the nifA promoter. Gene 134: 145152.
  • Wells, J.A. (1990) Additivity of mutational effects in proteins. Biochemistry 29: 85098517.
  • Wolanin, P.M., Webre, D.J., and Stock, J.B. (2003) Mechanism of phosphatase activity in the chemotaxis response regulator CheY. Biochemistry 42: 1407514082.
  • Wright, G.D., Holman, T.R., and Walsh, C.T. (1993) Purification and characterization of VanR and the cytosolic domain of VanS: a two-component regulatory system required for vancomycin resistance in Enterococcus faecium BM4147. Biochemistry 32: 50575063.
  • Xu, Q., Porter, S.W., and West, A.H. (2003) The yeast YPD1/SLN1 complex: insights into molecular recognition in two-component signaling systems. Structure 11: 15691581.
  • Yamamoto, K., Hirao, K., Oshima, T., Aiba, H., Utsumi, R., and Ishihama, A. (2005) Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J Biol Chem 280: 14481456.
  • Zapf, J., Madhusudan, M., Grimshaw, C.E., Hoch, J.A., Varughese, K.I., and Whiteley, J.M. (1998) A source of response regulator autophosphatase activity: the critical role of a residue adjacent to the Spo0F autophosphorylation active site. Biochemistry 37: 77257732.
  • Zhao, R., Collins, E.J., Bourret, R.B., and Silversmith, R.E. (2002) Structure and catalytic mechanism of the E. coli chemotaxis phosphatase CheZ. Nat Struct Biol 9: 570575.
  • Zhu, Y., and Inouye, M. (2002) The role of the G2 box, a conserved motif in the histidine kinase superfamily, in modulating the function of EnvZ. Mol Microbiol 45: 653663.