SEARCH

SEARCH BY CITATION

References

  • Banerjee, A., Dubnau, E., Quemard, A., Balasubramanian, V., Um, K.S., Wilson, T., et al. (1994) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263: 227230.
  • Bardarov, S., Bardarov, S., Jr, Pavelka, M.S., Jr, Sambandamurthy, V., Larsen, M., Tufariello, J., et al. (2002) Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148: 30073017.
  • Baulard, A.R., Betts, J.C., Engohang-Ndong, J., Quan, S., McAdam, R.A., Brennan, P.J., et al. (2000) Activation of the pro-drug ethionamide is regulated in mycobacteria. J Biol Chem 275: 2832628331.
  • Buchmeier, N., and Fahey, R.C. (2006) The mshA gene encoding the glycosyltransferase of mycothiol biosynthesis is essential in Mycobacterium tuberculosis Erdman. FEMS Microbiol Lett 264: 7479.
  • Buchmeier, N.A., Newton, G.L., Koledin, T., and Fahey, R.C. (2003) Association of mycothiol with protection of Mycobacterium tuberculosis from toxic oxidants and antibiotics. Mol Microbiol 47: 17231732.
  • Buchmeier, N.A., Newton, G.L., and Fahey, R.C. (2006) A mycothiol synthase mutant of Mycobacterium tuberculosis has an altered thiol-disulfide content and limited tolerance to stress. J Bacteriol 188: 62456252.
  • Cardoso, R.F., Cooksey, R.C., Morlock, G.P., Barco, P., Cecon, L., Forestiero, F., et al. (2004) Screening and characterization of mutations in isoniazid-resistant Mycobacterium tuberculosis isolates obtained in Brazil. Antimicrob Agents Chemother 48: 33733381.
  • DeBarber, A.E., Mdluli, K., Bosman, M., Bekker, L.G., and Barry, C.E., 3rd (2000) Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proc Natl Acad Sci USA 97: 96779682.
  • Dessen, A., Quemard, A., Blanchard, J.S., Jacobs, W.R., Jr, and Sacchettini, J.C. (1995) Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science 267: 16381641.
  • Dover, L.G., Alahari, A., Gratraud, P., Gomes, J.M., Bhowruth, V., Reynolds, R.C., et al. (2007) EthA, a common activator of thiocarbamide-containing drugs acting on different mycobacterial targets. Antimicrob Agents Chemother 51: 10551063.
  • Dubos, R.J., and Middlebrook, G. (1947) Media for tubercle bacilli. Am Rev Tuberc 56: 334345.
  • Gandhi, N.R., Moll, A., Sturm, A.W., Pawinski, R., Govender, T., Lalloo, U., et al. (2006) Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet 368: 15751580.
  • Hazbon, M.H., Brimacombe, M., Bobadilla del Valle, M., Cavatore, M., Guerrero, M.I., Varma-Basil, M., et al. (2006) Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 50: 26402649.
  • Koledin, T., Newton, G.L., and Fahey, R.C. (2002) Identification of the mycothiol synthase gene (mshD) encoding the acetyltransferase producing mycothiol in actinomycetes. Arch Microbiol 178: 331337.
  • Larsen, M.H., Vilcheze, C., Kremer, L., Besra, G.S., Parsons, L., Salfinger, M., et al. (2002) Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis. Mol Microbiol 46: 453466.
  • Leonardo, M.R., Dailly, Y., and Clark, D.P. (1996) Role of NAD in regulating the adhE gene of Escherichia coli. J Bacteriol 178: 60136018.
  • Lund, O., Nielsen, M., Lundegaard, C., and Worning, P. (2002) CPHmodels 2.0: X3M a Computer Program to Extract 3D Models. In CASP5 Conferencea102.
  • Marrakchi, H., Laneelle, G., and Quemard, A. (2000) InhA, a target of the antituberculous drug isoniazid, is involved in a mycobacterial fatty acid elongation system, FAS-II. Microbiology 146 (Part 2): 289296.
  • Martin, A., Morcillo, N., Lemus, D., Montoro, E., Telles, M.A., Simboli, N., et al. (2005) Multicenter study of MTT and resazurin assays for testing susceptibility to first-line anti-tuberculosis drugs. Int J Tuberc Lung Dis 9: 901906.
  • Middlebrook, G. (1954) Isoniazid resistance and catalase activity of tubercle bacilli. Am Rev Tuberc 69: 471472.
  • Middlebrook, G., Cohn, M.L., and Schaefer, W.B. (1954) Studies on isoniazid and tubercle bacilli. III. The isolation, drug-susceptibility, and catalase-testing of tubercle bacilli from isoniazid-treated patients. Am Rev Tuberc 70: 852872.
  • Miesel, L., Weisbrod, T.R., Marcinkeviciene, J.A., Bittman, R., and Jacobs, W.R., Jr (1998) NADH dehydrogenase defects confer isoniazid resistance and conditional lethality in Mycobacterium smegmatis. J Bacteriol 180: 24592467.
  • Morlock, G.P., Metchock, B., Sikes, D., Crawford, J.T., and Cooksey, R.C. (2003) ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 47: 37993805.
  • Newton, G.L., and Fahey, R.C. (2002) Mycothiol biochemistry. Arch Microbiol 178: 388394.
  • Newton, G.L., Arnold, K., Price, M.S., Sherrill, C., Delcardayre, S.B., Aharonowitz, Y., et al. (1996) Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J Bacteriol 178: 19901995.
  • Newton, G.L., Unson, M.D., Anderberg, S.J., Aguilera, J.A., De Oh, N.N.I., Cardayre, S.B., et al. (1999) Characterization of Mycobacterium smegmatis mutants defective in 1-D-myo-inosityl-2-amino-2-deoxy-alpha-D-glucopyranoside and mycothiol biosynthesis. Biochem Biophys Res Commun 255: 239244.
  • Newton, G.L., Av-Gay, Y., and Fahey, R.C. (2000a) A novel mycothiol-dependent detoxification pathway in mycobacteria involving mycothiol S-conjugate amidase. Biochemistry 39: 1073910746.
  • Newton, G.L., Av-Gay, Y., and Fahey, R.C. (2000b) N-acetyl-1-D-myo-inosityl-2-amino-2-deoxy-alpha-D-glucopyranoside deacetylase (MshB) is a key enzyme in mycothiol biosynthesis. J Bacteriol 182: 69586963.
  • Newton, G.L., Koledin, T., Gorovitz, B., Rawat, M., Fahey, R.C., and Av-Gay, Y. (2003) The glycosyltransferase gene encoding the enzyme catalyzing the first step of mycothiol biosynthesis (mshA). J Bacteriol 185: 34763479.
  • Newton, G.L., Ta, P., Bzymek, K.P., and Fahey, R.C. (2006) Biochemistry of the initial steps of mycothiol biosynthesis. J Biol Chem 281: 3391033920.
  • Piatek, A.S., Telenti, A., Murray, M.R., El-Hajj, H., Jacobs, W.R., Jr, Kramer, F.R., and Alland, D. (2000) Genotypic analysis of Mycobacterium tuberculosis in two distinct populations using molecular beacons: implications for rapid susceptibility testing. Antimicrob Agents Chemother 44: 103110.
  • Quemard, A., Laneelle, G., and Lacave, C. (1992) Mycolic acid synthesis: a target for ethionamide in mycobacteria? Antimicrob Agents Chemother 36: 13161321.
  • Quemard, A., Sacchettini, J.C., Dessen, A., Vilcheze, C., Bittman, R., Jacobs, W.R., Jr, and Blanchard, J.S. (1995) Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Biochemistry 34: 82358241.
  • Ramaswamy, S.V., Reich, R., Dou, S.J., Jasperse, L., Pan, X., Wanger, A., et al. (2003) Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 47: 12411250.
  • Rawat, M., Kovacevic, S., Billman-Jacobe, H., and Av-Gay, Y. (2003) Inactivation of mshB, a key gene in the mycothiol biosynthesis pathway in Mycobacterium smegmatis. Microbiology 149: 13411349.
  • Rawat, M., Johnson, C., Cadiz, V., and Av-Gay, Y. (2007) Comparative analysis of mutants in the mycothiol biosynthesis pathway in Mycobacterium smegmatis. Biochem Biophys Res Commun 363: 7176.
  • Rozwarski, D.A., Grant, G.A., Barton, D.H., Jacobs, W.R., Jr, and Sacchettini, J.C. (1998) Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science 279: 98102.
  • San, K.Y., Bennett, G.N., Berrios-Rivera, S.J., Vadali, R.V., Yang, Y.T., Horton, E., et al. (2002) Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli. Metab Eng 4: 182192.
  • Sareen, D., Newton, G.L., Fahey, R.C., and Buchmeier, N.A. (2003) Mycothiol is essential for growth of Mycobacterium tuberculosis Erdman. J Bacteriol 185: 67366740.
  • Shah, N.S., Wright, A., Bai, G.H., Barrera, L., Boulahbal, F., Martin-Casabona, N., et al. (2007) Worldwide emergence of extensively drug-resistant tuberculosis. Emerg Infect Dis 13: 380387.
  • Stover, C.K., De La Cruz, V.F., Fuerst, T.R., Burlein, J.E., Benson, L.A., Bennett, L.T., et al. (1991) New use of BCG for recombinant vaccines. Nature 351: 456460.
  • Takayama, K., Wang, L., and David, H.L. (1972) Effect of isoniazid on the in vivo mycolic acid synthesis, cell growth, and viability of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2: 2935.
  • Telenti, A., Honore, N., Bernasconi, C., March, J., Ortega, A., Heym, B., et al. (1997) Genotypic assessment of isoniazid and rifampin resistance in Mycobacterium tuberculosis: a blind study at reference laboratory level. J Clin Microbiol 35: 719723.
  • Vannelli, T.A., Dykman, A., and Ortiz de Montellano, P.R. (2002) The antituberculosis drug ethionamide is activated by a flavoprotein monooxygenase. J Biol Chem 277: 1282412829.
  • Vetting, M.W., Frantom, P.A., and Blanchard, J.S. (2008) Structural and enzymatic analysis of Msha from Corynebacterium glutamicum: substrate-assisted catalysis. J Biol Chem 283: 1583415844.
  • Vilcheze, C., and Jacobs, W.R., Jr (2007a) Isolation and analysis of Mycobacterium tuberculosis mycolic acids. Current Protocols in Microbiology: Unit 10A.13.
  • Vilcheze, C., and Jacobs, W.R., Jr (2007b) The mechanism of isoniazid killing: clarity through the scope of genetics. Annu Rev Microbiol 61: 3550.
  • Vilcheze, C., Weisbrod, T.R., Chen, B., Kremer, L., Hazbon, M.H., Wang, F., et al. (2005) Altered NADH/NAD+ ratio mediates coresistance to isoniazid and ethionamide in mycobacteria. Antimicrob Agents Chemother 49: 708720.
  • Vilcheze, C., Wang, F., Arai, M., Hazbon, M.H., Colangeli, R., Kremer, L., et al. (2006) Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nat Med 12: 10271029.
  • Wang, F., Langley, R., Gulten, G., Dover, L.G., Besra, G.S., Jacobs, W.R., Jr, and Sacchettini, J.C. (2007) Mechanism of thioamide drug action against tuberculosis and leprosy. J Exp Med 204: 7378.
  • Wilming, M., and Johnsson, K. (1999) Spontaneous formation of the bioactive form of the tuberculosis drug isoniazid. Angew Chem Int Ed Engl 38: 25882590.
  • Winder, F.G., and Collins, P.B. (1970) Inhibition by isoniazid of synthesis of mycolic acids in Mycobacterium tuberculosis. J Gen Microbiol 63: 4148.
  • Winder, F.G., Collins, P.B., and Whelan, D. (1971) Effects of ethionamide and isoxyl on mycolic acid synthesis in Mycobacterium tuberculosis BCG. J Gen Microbiol 66: 379380.
  • Zhang, Y., Heym, B., Allen, B., Young, D., and Cole, S. (1992) The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358: 591593.
  • Zignol, M., Hosseini, M.S., Wright, A., Weezenbeek, C.L., Nunn, P., Watt, C.J., et al. (2006) Global incidence of multidrug-resistant tuberculosis. J Infect Dis 194: 479485.