SEARCH

SEARCH BY CITATION

References

  • Alamuri, P., and Maier, R.J. (2004) Methionine sulphoxide reductase is an important antioxidant enzyme in the gastric pathogen Helicobacter pylori. Mol Microbiol 53: 13971406.
  • Bardarov, S., Bardarov, S., Jr, Pavelka, M.S., Jr, Sambandamurthy, V., Larsen, M., Tufariello, J., et al. (2002) Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG M. smegmatis. Microbiology 148: 30073017.
  • Borelli, V., Banfi, E., Perrotta, M.G., and Zabucchi, G. (1999) Myeloperoxidase exerts microbicidal activity against Mycobacterium tuberculosis. Infect Immun 67: 41494152.
  • Boschi-Muller, S., Olry, A., Antoine, M., and Branlant, G. (2005) The enzymology and biochemistry of methionine sulfoxide reductases. Biochim Biophys Acta 1703: 231238.
  • Bryk, R., Griffin, P., and Nathan, C. (2000) Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407: 211215.
  • Bryk, R., Lima, C.D., Erdjument-Bromage, H., Tempst, P., and Nathan, C. (2002) Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. Science 295: 10731077.
  • Buchmeier, N.A., Newton, G.L., Koledin, T., and Fahey, R.C. (2003) Association of mycothiol with protection of Mycobacterium tuberculosis from toxic oxidants and antibiotics. Mol Microbiol 47: 17231732.
  • Bustamante, J., Aksu, G., Vogt, G., De Beaucoudrey, L., Genel, F., Chapgier, A., et al. (2007) BCG-osis and tuberculosis in a child with chronic granulomatous disease. J Allergy Clin Immunol 120: 3238.
  • Choi, H.S., Rai, P.R., Chu, H.W., Cool, C., and Chan, E.D. (2002) Analysis of nitric oxide synthase and nitrotyrosine expression in human pulmonary tuberculosis. Am J Respir Crit Care Med 166: 178186.
  • Clamp, M., Cuff, J., Searle, S.M., and Barton, G.J. (2004) The Jalview Java alignment editor. Bioinformatics 20: 426427.
  • Darwin, K.H., Ehrt, S., Gutierrez-Ramos, J.C., Weich, N., and Nathan, C.F. (2003) The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302: 19631966.
  • Darwin, K.H., Lin, G., Chen, Z., Li, H., and Nathan, C.F. (2005) Characterization of a Mycobacterium tuberculosis proteasomal ATPase homologue. Mol Microbiol 55: 561571.
  • Douglas, T., Daniel, D.S., Parida, B.K., Jagannath, C., and Dhandayuthapani, S. (2004) Methionine sulfoxide reductase A (MsrA) deficiency affects the survival of Mycobacterium smegmatis within macrophages. J Bacteriol 186: 35903598.
  • Facchetti, F., Vermi, W., Fiorentini, S., Chilosi, M., Caruso, A., Duse, M., et al. (1999) Expression of inducible nitric oxide synthase in human granulomas and histiocytic reactions. Am J Pathol 154: 145152.
  • Gandotra, S., Schnappinger, D., Monteleone, M., Hillen, W., and Ehrt, S. (2007) In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice. Nat Med 13: 15151520.
  • Grimaud, R., Ezraty, B., Mitchell, J.K., Lafitte, D., Briand, C., Derrick, P.J., and Barras, F. (2001) Repair of oxidized proteins. Identification of a new methionine sulfoxide reductase. J Biol Chem 276: 4891548920.
  • Jaeger, T., Budde, H., Flohe, L., Menge, U., Singh, M., Trujillo, M., and Radi, R. (2004) Multiple thioredoxin-mediated routes to detoxify hydroperoxides in Mycobacterium tuberculosis. Arch Biochem Biophys 423: 182191.
  • Lama, A., Pawaria, S., and Dikshit, K.L. (2006) Oxygen binding and NO scavenging properties of truncated hemoglobin, HbN, of Mycobacterium smegmatis. FEBS Lett 580: 40314041.
  • Lavine, T.F. (1947) The formation, resolution, and optical properties of the diastereoisomeric sulfoxides derived from L-methionine. J Biol Chem 169: 477492.
  • Levine, R.L., Mosoni, L., Berlett, B.S., and Stadtman, E.R. (1996) Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci USA 93: 1503615040.
  • Lin, Z., Johnson, L.C., Weissbach, H., Brot, N., Lively, M.O., and Lowther, W.T. (2007) Free methionine-(R) -sulfoxide reductase from Escherichia coli reveals a new GAF domain function. Proc Natl Acad Sci USA 104: 95979602.
  • Lowther, W.T., Weissbach, H., Etienne, F., Brot, N., and Matthews, B.W. (2002) The mirrored methionine sulfoxide reductases of Neisseria gonorrhoeae pilB. Nat Struct Biol 9: 348352.
  • MacMicking, J.D., North, R.J., LaCourse, R., Mudgett, J.S., Shah, S.K., and Nathan, C.F. (1997) Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci USA 94: 52435248.
  • Ng, V.H., Cox, J.S., Sousa, A.O., MacMicking, J.D., and McKinney, J.D. (2004) Role of KatG catalase-peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst. Mol Microbiol 52: 12911302.
  • Nicholson, S., Bonecini-Almeida Mda, G., Lapa e Silva, J.R., Nathan, C., Xie, Q.W., Mumford, R., et al. (1996) Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J Exp Med 183: 22932302.
  • Nino, C.J.C., and Dhandayuthapani, S. (2007) Role of Methionine-R-sulfoxide reductase (MsrB) in the intracellular survival of Mycobacterium smegmatis. In: Abstract Book, Keystone Symposia on Tuberculosis: From Laboratory Research to Field Trials. Kaufmann, S.H.E., Smith, I., and Nathan, C.F. (Eds). Silverthorne, Colorado: Keystone Symposia. p. 83.
  • Nozaki, Y., Hasegawa, Y., Ichiyama, S., Nakashima, I., and Shimokata, K. (1997) Mechanism of nitric oxide-dependent killing of Mycobacterium bovis BCG in human alveolar macrophages. Infect Immun 65: 36443647.
  • Pathania, R., Navani, N.K., Gardner, A.M., Gardner, P.R., and Dikshit, K.L. (2002) Nitric oxide scavenging and detoxification by the Mycobacterium tuberculosis haemoglobin, HbN in Escherichia coli. Mol Microbiol 45: 13031314.
  • Rhee, K.Y., Erdjument-Bromage, H., Tempst, P., and Nathan, C.F. (2005) S-nitroso proteome of Mycobacterium tuberculosis: enzymes of intermediary metabolism and antioxidant defense. Proc Natl Acad Sci USA 102: 467472.
  • Samarina, A. (2005). Cell mediated immune responses in tissue from patients with pulmonary tuberculosis. Thesis. Karolinska Institutet. Stockholm, Sweden.
  • Scanga, C.A., Mohan, V.P., Tanaka, K., Alland, D., Flynn, J.L., and Chan, J. (2001) The inducible nitric oxide synthase locus confers protection against aerogenic challenge of both clinical and laboratory strains of Mycobacterium tuberculosis in mice. Infect Immun 69: 77117717.
  • Schnappinger, D., Ehrt, S., Voskuil, M.I., Liu, Y., Mangan, J.A., Monahan, I., et al. (2003) Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198: 693704.
  • Schon, T., Elmberger, G., Negesse, Y., Pando, R.H., Sundqvist, T., and Britton, S. (2004) Local production of nitric oxide in patients with tuberculosis. Int J Tuberc Lung Dis 8: 11341137.
  • Shi, S., and Ehrt, S. (2006) Dihydrolipoamide acyltransferase is critical for Mycobacterium tuberculosis pathogenesis. Infect Immun 74: 5663.
  • Singh, V.K., and Moskovitz, J. (2003) Multiple methionine sulfoxide reductase genes in Staphylococcus aureus: expression of activity and roles in tolerance of oxidative stress. Microbiology 149: 27392747.
  • Skaar, E.P., Tobiason, D.M., Quick, J., Judd, R.C., Weissbach, H., Etienne, F., et al. (2002) The outer membrane localization of the Neisseria gonorrhoeae MsrA/B is involved in survival against reactive oxygen species. Proc Natl Acad Sci USA 99: 1010810113.
  • St John, G., Brot, N., Ruan, J., Erdjument-Bromage, H., Tempst, P., Weissbach, H., and Nathan, C. (2001) Peptide methionine sulfoxide reductase from Escherichia coli and Mycobacterium tuberculosis protects bacteria against oxidative damage from reactive nitrogen intermediates. Proc Natl Acad Sci USA 98: 99019906.
  • Stewart, G.R., Ehrt, S., Riley, L.W., Dale, J.W., and McFadden, J. (2000) Deletion of the putative antioxidant noxR1 does not alter the virulence of Mycobacterium tuberculosis H37Rv. Tuber Lung Dis 80: 237242.
  • Sun, H., Gao, J., Ferrington, D.A., Biesiada, H., Williams, T.D., and Squier, T.C. (1999) Repair of oxidized calmodulin by methionine sulfoxide reductase restores ability to activate the plasma membrane Ca-ATPase. Biochemistry 38: 105112.
  • Taylor, A.B., Benglis, D.M., Jr, Dhandayuthapani, S., and Hart, P.J. (2003) Structure of Mycobacterium tuberculosis methionine sulfoxide reductase A in complex with protein-bound methionine. J Bacteriol 185: 41194126.
  • Tian, J., Bryk, R., Shi, S., Erdjument-Bromage, H., Tempst, P., and Nathan, C. (2005) Mycobacterium tuberculosis appears to lack alpha-ketoglutarate dehydrogenase and encodes pyruvate dehydrogenase in widely separated genes. Mol Microbiol 57: 859868.
  • Vieira Dos Santos, C., Cuine, S., Rouhier, N., and Rey, P. (2005) The Arabidopsis plastidic methionine sulfoxide reductase B proteins. Sequence and activity characteristics, comparison of the expression with plastidic methionine sulfoxide reductase A, and induction by photooxidative stress. Plant Physiol 138: 909922.
  • Vogt, W. (1995) Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radic Biol Med 18: 93105.
  • Wang, C.H., and Kuo, H.P. (2001) Nitric oxide modulates interleukin-1beta and tumour necrosis factor-alpha synthesis, and disease regression by alveolar macrophages in pulmonary tuberculosis. Respirology 6: 7984.
  • Wang, C.H., Liu, C.Y., and Lin, H.C., Yu, C.T., Chung, K.F., and Kuo, H.P. (1998) Increased exhaled nitric oxide in active pulmonary tuberculosis due to inducible NO synthase upregulation in alveolar macrophages. Eur Respir J 11: 809815.
  • Weissbach, H., Etienne, F., Hoshi, T., Heinemann, S.H., Lowther, W.T., Matthews, B., et al. (2002) Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function. Arch Biochem Biophys 397: 172178.