SEARCH

SEARCH BY CITATION

References

  • Abe, M., Nishida, I., Minemura, M., Qadota, H., Seyama, Y., Watanabe, T., and Ohya, Y. (2001) Yeast 1,3-beta-glucan synthase activity is inhibited by phytosphingosine localized to the endoplasmic reticulum. J Biol Chem 276: 2692326930.
  • Barz, W.P., and Walter, P. (1999) Two endoplasmic reticulum (ER) membrane proteins that facilitate ER-to-Golgi transport of glycosylphosphatidylinositol-anchored proteins. Mol Biol Cell 10: 10431059.
  • Brace, J.L., Lester, R.L., Dickson, R.C., and Rudin, C.M. (2007) SVF1 regulates cell survival by affecting sphingolipid metabolism in Saccharomyces cerevisiae. Genetics 175: 6576.
  • Cerantola, V., Vionnet, C., Aebischer, O.F., Jenny, T., Knudsen, J., and Conzelmann, A. (2007) Yeast sphingolipids do not need to contain very long chain fatty acids. Biochem J 401: 205216.
  • Chung, J.H., Lester, R.L., and Dickson, R.C. (2003) Sphingolipid requirement for generation of a functional v1 component of the vacuolar ATPase. J Biol Chem 278: 2887228881.
  • Chung, N., Jenkins, G., Hannun, Y.A., Heitman, J., and Obeid, L.M. (2000) Sphingolipids signal heat stress-induced ubiquitin-dependent proteolysis. J Biol Chem 275: 1722917232.
  • Chung, N., Mao, C., Heitman, J., Hannun, Y.A., and Obeid, L.M. (2001) Phytosphingosine as a specific inhibitor of growth and nutrient import in Saccharomyces cerevisiae. J Biol Chem 276: 3561435621.
  • Cox, J.S., Chapman, R.E., and Walter, P. (1997) The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. Mol Biol Cell 8: 18051814.
  • D'mello, N.P., Childress, A.M., Franklin, D.S., Kale, S.P., Pinswasdi, C., and Jazwinski, S.M. (1994) Cloning and characterization of LAG1, a longevity-assurance gene in yeast. J Biol Chem 269: 1545115459.
  • Dickson, R.C. (2008) Thematic review series: sphingolipids. New insights into sphingolipid metabolism and function in budding yeast. J Lipid Res 49: 909921.
  • Dickson, R.C., and Lester, R.L. (1999) Metabolism and selected functions of sphingolipids in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1438: 305321.
  • Dickson, R.C., and Lester, R.L. (2002) Sphingolipid functions in Saccharomyces cerevisiae. Biochim Biophys Acta 1583: 1325.
  • Dickson, R.C., Sumanasekera, C., and Lester, R.L. (2006) Functions and metabolism of sphingolipids in Saccharomyces cerevisiae. Prog Lipid Res 45: 447465.
  • Ejsing, C.S., Moehring, T., Bahr, U., Duchoslav, E., Karas, M., Simons, K., and Shevchenko, A. (2006) Collision-induced dissociation pathways of yeast sphingolipids and their molecular profiling in total lipid extracts: a study by quadrupole TOF and linear ion trap-orbitrap mass spectrometry. J Mass Spectrom 41: 372389.
  • Endo, M., Takesako, K., Kato, I., and Yamaguchi, H. (1997) Fungicidal action of aureobasidin A, a cyclic depsipeptide antifungal antibiotic, against Saccharomyces cerevisiae. Antimicrob Agents Chemother 41: 672676.
  • Gaigg, B., Timischl, B., Corbino, L., and Schneiter, R. (2005) Synthesis of sphingolipids with very long chain fatty acids but not ergosterol is required for routing of newly synthesized plasma membrane ATPase to the cell surface of yeast. J Biol Chem 280: 2251522522.
  • Gaigg, B., Toulmay, A., and Schneiter, R. (2006) Very long-chain fatty acid-containing lipids rather than sphingolipids per se are required for raft association and stable surface transport of newly synthesized plasma membrane ATPase in yeast. J Biol Chem 281: 3413534145.
  • Gaspar, M.L., Aregullin, M.A., Jesch, S.A., and Henry, S.A. (2006) Inositol induces a profound alteration in the pattern and rate of synthesis and turnover of membrane lipids in Saccharomyces cerevisiae. J Biol Chem 281: 2277322785.
  • Guan, X.L., and Wenk, M.R. (2006) Mass spectrometry-based profiling of phospholipids and sphingolipids in extracts from Saccharomyces cerevisiae. Yeast 23: 465477.
  • Guillas, I., Kirchman, P.A., Chuard, R., Pfefferli, M., Jiang, J.C., Jazwinski, S.M., and Conzelmann, A. (2001) C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p. EMBO J 20: 26552665.
  • Haak, D., Gable, K., Beeler, T., and Dunn, T. (1997) Hydroxylation of Saccharomyces cerevisiae ceramides requires Sur2p and Scs7p. J Biol Chem 272: 2970429710.
  • Hanson, B.A., and Lester, R.L. (1980) The extraction of inositol-containing phospholipids and phosphatidylcholine from Saccharomyces cerevisiae and Neurospora crassa. J Lipid Res 21: 309315.
  • Hashida-Okado, T., Ogawa, A., Endo, M., Yasumoto, R., Takesako, K., and Kato, I. (1996) AUR1, a novel gene conferring aureobasidin resistance on Saccharomyces cerevisiae: a study of defective morphologies in Aur1p-depleted cells. Mol Gen Genet 251: 236244.
  • Heidler, S.A., and Radding, J.A. (1995) The AUR1 gene in Saccharomyces cerevisiae encodes dominant resistance to the antifungal agent aureobasidin A (LY295337). Antimicrob Agents Chemother 39: 27652769.
  • Jiang, J.C., Kirchman, P.A., Zagulski, M., Hunt, J., and Jazwinski, S.M. (1998) Homologs of the yeast longevity gene LAG1 in Caenorhabditis elegans and human. Genome Res 8: 12591272.
  • Jiang, J.C., Kirchman, P.A., Allen, M., and Jazwinski, S.M. (2004) Suppressor analysis points to the subtle role of the LAG1 ceramide synthase gene in determining yeast longevity. Exp Gerontol 39: 9991009.
  • Ko, J., Cheah, S., and Fischl, A.S. (1994) Regulation of phosphatidylinositol: ceramide phosphoinositol transferase in Saccharomyces cerevisiae. J Bacteriol 176: 51815183.
  • Lee, M.C., Hamamoto, S., and Schekman, R. (2002) Ceramide biosynthesis is required for the formation of the oligomeric H+-ATPase Pma1p in the yeast endoplasmic reticulum. J Biol Chem 277: 2239522401.
  • Lester, R.L., Wells, G.B., Oxford, G., and Dickson, R.C. (1993) Mutant strains of Saccharomyces cerevisiae lacking sphingolipids synthesize novel inositol glycerophospholipids that mimic sphingolipid structures. J Biol Chem 268: 845856.
  • Loewen, C.J., Gaspar, M.L., Jesch, S.A., Delon, C., Ktistakis, N.T., Henry, S.A., and Levine, T.P. (2004) Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304: 16441647.
  • Mandala, S.M., Thornton, R.A., Frommer, B.R., Curotto, J.E., Rozdilsky, W., Kurtz, M.B., et al. (1995) The discovery of australifungin, a novel inhibitor of sphinganine N-acyltransferase from Sporormiella australis. Producing organism, fermentation, isolation, and biological activity. J Antibiot (Tokyo) 48: 349356.
  • Mao, C., Xu, R., Bielawska, A., and Obeid, L.M. (2000a) Cloning of an alkaline ceramidase from Saccharomyces cerevisiae. An enzyme with reverse (CoA-independent) ceramide synthase activity. J Biol Chem 275: 68766884.
  • Mao, C., Xu, R., Bielawska, A., Szulc, Z.M., and Obeid, L.M. (2000b) Cloning and characterization of a Saccharomyces cerevisiae alkaline ceramidase with specificity for dihydroceramide. J Biol Chem 275: 3136931378.
  • Merrill, A.H.J., Wang, E., Mullins, R.E., Jamison, W.C., Nimkar, S., and Liotta, D.C. (1988) Quantitation of free sphingosine in liver by high-performance liquid chromatography. Anal Biochem 171: 373381.
  • Nagiec, M.M., Wells, G.B., Lester, R.L., and Dickson, R.C. (1993) A suppressor gene that enables Saccharomyces cerevisiae to grow without making sphingolipids encodes a protein that resembles an Escherichia coli fatty acyltransferase. J Biol Chem 268: 2215622163.
  • Nagiec, M.M., Nagiec, E.E., Baltisberger, J.A., Wells, G.B., Lester, R.L., and Dickson, R.C. (1997) Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. J Biol Chem 272: 98099817.
  • Obeid, L.M., and Hannun, Y.A. (2003) Ceramide, stress, and a ‘LAG’ in aging. Sci Aging Knowledge Environ 2003: PE27.
  • Oh, C.S., Toke, D.A., Mandala, S., and Martin, C.E. (1997) ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J Biol Chem 272: 1737617384.
  • Patton, J.L., Srinivasan, B., Dickson, R.C., and Lester, R.L. (1992) Phenotypes of sphingolipid-dependent strains of Saccharomyces cerevisiae. J Bacteriol 174: 71807184.
  • Pinto, W.J., Srinivasan, B., Shepherd, S., Schmidt, A., Dickson, R.C., and Lester, R.L. (1992) Sphingolipid long-chain-base auxotrophs of Saccharomyces cerevisiae: genetics, physiology, and a method for their selection. J Bacteriol 174: 25652574.
  • Reggiori, F., Canivenc-Gansel, E., and Conzelmann, A. (1997) Lipid remodeling leads to the introduction and exchange of defined ceramides on GPI proteins in the ER and Golgi of Saccharomyces cerevisiae. EMBO J 16: 35063518.
  • Santiago, T.C., and Mamoun, C.B. (2003) Genome expression analysis in yeast reveals novel transcriptional regulation by inositol and choline and new regulatory functions for Opi1p, Ino2p, and Ino4p. J Biol Chem 278: 3872338730.
  • Schneiter, R., Brugger, B., Amann, C.M., Prestwich, G.D., Epand, R.F., Zellnig, G., et al. (2004) Identification and biophysical characterization of a very-long-chain-fatty-acid-substituted phosphatidylinositol in yeast subcellular membranes. Biochem J 381: 941949.
  • Schorling, S., Vallee, B., Barz, W.P., Riezman, H., and Oesterhelt, D. (2001) Lag1p and Lac1p are essential for the Acyl-CoA-dependent ceramide synthase reaction in Saccharomyces cerevisiae. Mol Biol Cell 12: 34173427.
  • Schuldiner, M., Collins, S.R., Thompson, N.J., Denic, V., Bhamidipati, A., Punna, T., et al. (2005) Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123: 507519.
  • Sherman, F. (2002) Getting started with yeast. Methods Enzymol 350: 341.
  • Sims, K.J., Spassieva, S.D., Voit, E.O., and Obeid, L.M. (2004) Yeast sphingolipid metabolism: clues and connections. Biochem Cell Biol 82: 4561.
  • Skrzypek, M.S., Nagiec, M.M., Lester, R.L., and Dickson, R.C. (1998) Inhibition of amino acid transport by sphingoid long chain bases in Saccharomyces cerevisiae. J Biol Chem 273: 28292834.
  • Smith, S.W., and Lester, R.L. (1974) Inositol phosphorylceramide, a novel substance and the chief member of a major group of yeast sphingolipids containing a single inositol phosphate. J Biol Chem 249: 33953405.
  • Vallée, B., and Riezman, H. (2005) Lip1p: a novel subunit of acyl-CoA ceramide synthase. EMBO J 24: 730741.
  • Wang, E., Norred, W.P., Bacon, C.W., Riley, R.T., and Merrill, A.H.J. (1991) Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme. J Biol Chem 266: 1448614490.
  • Watanabe, R., Funato, K., Venkataraman, K., Futerman, A.H., and Riezman, H. (2002) Sphingolipids are required for the stable membrane association of glycosylphosphatidylinositol-anchored proteins in yeast. J Biol Chem 277: 4953849544.
  • Winter, E., and Ponting, C.P. (2002) TRAM, LAG1 and CLN8: members of a novel family of lipid-sensing domains? Trends Biochem Sci 27: 381383.
  • Yoshimoto, H., Saltsman, K., Gasch, A.P., Li, H.X., Ogawa, N., Botstein, D., et al. (2002) Genome-wide analysis of gene expression regulated by the calcineurin/Crz1p signaling pathway in Saccharomyces cerevisiae. J Biol Chem 277: 3107931088.