• Brown, G.D., and Gordon, S. (2001) Immune recognition. A new receptor for beta-glucans. Nature 413: 3637.
  • Cérantola, S., Marty, N., and Montrozier, H. (1996) Structural studies of the acidic exopolysaccharide produced by a mucoid strain of Burkholderia cepacia, isolated from cystic fibrosis. Carbohydr Res 285: 5967.
  • Chung, J.W., Altman, E., Beveridge, T.J., and Speert, D.P. (2003) Colonial morphology of Burkholderia cepacia complex genomovar III: implications in exopolysaccharide production, pilus expression, and persistence in the mouse. Infect Immun 71: 904909.
  • Conway, B.D., Chu, K.K., Bylund, J., Altman, E., and Speert, D.P. (2004) Production of exopolysaccharide by Burkholderia cenocepacia results in altered cell–surface interactions and altered bacterial clearance in mice. J Infect Dis 190: 957966.
  • Deretic, V., Govan, J.R., Konyecsni, W.M., and Martin, D.W. (1990) Mucoid Pseudomonas aeruginosa in cystic fibrosis: mutations in the muc loci affect transcription of the algR and algD genes in response to environmental stimuli. Mol Microbiol 4: 189196.
  • Dürr, U.H., Sudheendra, U.S., and Ramamoorthy, A. (2006) LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta 1758: 14081425.
  • Ganz, T., and Lehrer, R.I. (1998) Antimicrobial peptides of vertebrates. Curr Opin Immunol 10: 4144.
  • Gennaro, R., Skerlavaj, B., and Romeo, D. (1989) Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect Immun 57: 31423146.
  • Govan, J.R.W., and Deretic, V. (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60: 539574.
  • Herasimenka, Y., Benincasa, M., Mattiuzzo, M., Cescutti, P., Gennaro, R., and Rizzo, R. (2005) Interaction of antimicrobial peptides with bacterial polysaccharides from lung pathogens. Peptides 26: 11271132.
  • Herasimenka, Y., Cescutti, P., Impallomeni, G., and Rizzo, R. (2007) Exopolysaccharides produced by Inquilinus limosus, a new pathogen of cystic fibrosis patients: novel structures with usual components. Carbohydr Res 342: 24042415.
  • Herasimenka, Y., Cescutti, P., Sampaio Noguera, C.E., Ruggiero, J.R., Urbani, R., Impallomeni, G., et al. (2008) Macromolecular properties of cepacian in water and dimethylsuphoxide. Carbohydr Res 343: 8189.
  • Johansson, J., Gudmundsson, G.H., Rottenberg, M.E., Berndt, K.D., and Agerberth, B. (1998) Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem 273: 37183724.
  • Juban, M.M., Javadpour, M.M., and Barkley, M.D. (1997) Circular dichroism studies of secondary structure of peptides. Methods Mol Biol 78: 7378.
  • Lagatolla, C., Skerlavaj, S., Dolzani, L., Tonin, E.A., Monti Bragadin, C., Bosco, M., et al. (2002) Microbiological characterization of Burkholderia cepacia isolates from cystic fibrosis patients: investigation of the exopolysaccharides produced. FEMS Microbiol Lett 209: 99106.
  • Morgera, F., Antcheva, N., Pacor, S., Quaroni, L., Berti, F., Vaccari, L., and Tossi, A. (2008) Structuring and interactions of human beta-defensins 2 and 3 with model membranes. J Pept Sci 14: 518523.
  • Nivens, D.E., Ohman, D.E., Williams, J., and Franklin, M.J. (2001) Role of alginate and its O-acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol 183: 10471057.
  • Ophir, T., and Gutnick, D.L. (1994) A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol 60: 740745.
  • Pier, G.B., Coleman, F., Grout, M., Franklin, M., and Ohman, D.E. (2001) Role of alginate O-acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis. Infect Immun 69: 18951901.
  • Porcelli, F., Verardi, R., Shi, L., Henzler-Wildman, A., Ramamoorthy, A., and Veglia, G. (2008) NMR structure of the cathelicidin-derived human antimicrobial peptide LL-37 in dodecylphosphocoline micelles. Biochemistry 47: 55655572.
  • Reckseidler-Zenteno, S.L., DeVinney, R., and Woods, D.E. (2005) The capsular polysaccharide of Burkholderia pseudomallei contributes to survival in serum by reducing complement factor C3b deposition. Infect Immun 73: 11061115.
  • Theilacker, C., Coleman, F.T., Mueschenborn, S., Llosa, N., Grout, M., and Pier, G.B. (2003) Construction and characterization of a Pseudomonas aeruginosa mucoid exopolysaccharide-Alginate Conjugate Vaccine. Infect Immun 71: 38753884.
  • Vuong, C., Voyich, J.M., Fischer, E.R., Braughton, K.R., Whitney, A.R., DeLeo, F.R., and Otto, M. (2004a) Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 6: 269275.
  • Vuong, C., Kocianova, S., Voyich, J.M., Yao, Y., Fischer, E.R., DeLeo, F.R., and Otto, M. (2004b) A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem 279: 5488154886.
  • Zelezetsky, I., Pontillo, A., Puzzi, L., Antcheva, N., Segat, S., Pacor, S., et al. (2006) Evolution of the primate cathelicidin. Correlation between structural variations and antimicrobial activity. J Biol Chem 281: 1986119871.
  • Zlosnik, J.E., Hird, T.J., Fraenkel, M.C., Moreira, L.M., Henry, D.A., and Speert, D.P. (2008) Differential mucoid exopolysaccharide production by members of the Burkholderia cepacia complex. J Clin Microbiol 46: 14701473.