SEARCH

SEARCH BY CITATION

References

  • Agarwalla, S., Kealey, J.T., Santi, D.V., and Stroud, R.M. (2002) Characterization of the 23S ribosomal RNA m5U1939 methyltransferase from Escherichia coli. J Biol Chem 277: 88358840.
  • Andersen, N.M., and Douthwaite, S. (2006) YebU is a m5C methyltransferase specific for 16S rRNA nucleotide 1407. J Mol Biol 359: 777786.
  • Andersen, T.E., Porse, B.T., and Kirpekar, F. (2004) A novel partial modification at C2501 in Escherichia coli 23S ribosomal RNA. RNA 10: 907913.
  • Andersen, T.E., Kirpekar, F., and Haselmann, K.F. (2006) RNA fragmentation in MALDI mass spectrometry studied by H/D-exchange: mechanisms of general applicability to nucleic acids. J Am Soc Mass Spectrom 17: 13531368.
  • Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., et al. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2: 2006.0008.
  • Bachellerie, J.P., and Cavaille, J. (1997) Guiding ribose methylation of rRNA. Trends Biochem Sci 22: 257261.
  • Basturea, G.N., Rudd, K.E., and Deutscher, M.P. (2006) Identification and characterization of RsmE, the founding member of a new RNA base methyltransferase family. RNA 12: 426434.
  • Brimacombe, R., Mitchell, P., Osswald, M., Stade, K., and Bochkariov, D. (1993) Clustering of modified nucleotides at the functional center of bacterial ribosomal RNA. FASEB J 7: 161167.
  • Bugl, H., Fauman, E.B., Staker, B.L., Zheng, F., Kushner, S.R., Saper, M.A., et al. (2000) RNA methylation under heat shock control. Mol Cell 6: 349360.
  • Bujnicki, J.M., and Rychlewski, L. (2000) Prediction of a novel RNA 2′-O-ribose methyltransferase subfamily encoded by the Escherichia coli YgdE open reading frame and its orthologs. Acta Microbiol Pol 49: 253260.
  • Caldas, T., Binet, E., Bouloc, P., Costa, A., Desgres, J., and Richarme, G. (2000) The FtsJ/RrmJ heat shock protein of Escherichia coli is a 23S ribosomal RNA methyltransferase. J Biol Chem 275: 1641416419.
  • Cannone, J.J., Subramanian, S., Schnare, M.N., Collett, J.R., D'Souza, L.M., Du, Y., et al. (2002) The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3: 2.
  • Conrad, J., Sun, D., Englund, N., and Ofengand, J. (1998) The rluC gene of Escherichia coli codes for a pseudouridine synthase that is solely responsible for synthesis of pseudouridine at positions 955, 2504, and 2580 in 23S ribosomal RNA. J Biol Chem 273: 1856218566.
  • Decatur, W.A., and Fournier, M.J. (2002) rRNA modifications and ribosome function. Trends Biochem Sci 27: 344351.
  • Del Campo, M., Kaya, Y., and Ofengand, J. (2001) Identification and site of action of the remaining four putative pseudouridine synthases in Escherichia coli. RNA 7: 16031615.
  • Dennis, P.P., Omer, A., and Lowe, T. (2001) A guided tour: small RNA function in Archaea. Mol Microbiol 40: 509519.
  • Douthwaite, S., and Kirpekar, F. (2007) Identifying modifications in RNA by MALDI mass spectrometry. Methods Enzymol 425: 120.
  • Douthwaite, S., Powers, T., Lee, J.Y., and Noller, H.F. (1989) Defining the structural requirements for a helix in 23S ribosomal RNA that confers erythromycin resistance. J Mol Biol 209: 655665.
  • Dunin-Horkawicz, S., Czerwoniec, A., Gajda, M.J., Feder, M., Grosjean, H., and Bujnicki, J.M. (2006) MODOMICS: a database of RNA modification pathways. Nucleic Acids Res 34: D145D149.
  • Erlacher, M.D., Lang, K., Shankaran, N., Wotzel, B., Huttenhofer, A., Micura, R., et al. (2005) Chemical engineering of the peptidyl transferase center reveals an important role of the 2′-hydroxyl group of A2451. Nucleic Acids Res 33: 16181627.
  • Ero, R., Peil, L., Liiv, A., and Remme, J. (2008) Identification of pseudouridine methyltransferase in Escherichia coli. RNA 14: 22232233.
  • Fauman, E.B., Cheng, X. and Blumenthal, R.M. (1999) Structure and evolution of AdoMet-dependant methyltransferases. In S-Adenosylmethionine Dependant Methyltransferases: Structures and Functions. Cheng, X.B. and Blumenthal, R.M. (eds). Singapore: World Scientific, pp. 132.
  • Feder, M., Pas, J., Wyrwicz, L.S., and Bujnicki, J.M. (2003) Molecular phylogenetics of the RrmJ/fibrillarin superfamily of ribose 2′-O-methyltransferases. Gene 302: 129138.
  • Giessing, A.E., Jensen, S.S., Rasmussen, A., Hansen, L.H., Gondela, A., Long, K., et al. (2009) Identification of 8-methyladenosine as the modification catalyzed by the radical SAM methyltranferase Cfr that confers antibiotic resistance in bacteria. RNA 15: 327336.
  • Green, R., and Noller, H.F. (1999) Reconstitution of functional 50S ribosomes from in vitro transcripts of Bacillus stearothermophilus 23S rRNA. Biochemistry 38: 17721779.
  • Grosjean, H. (2005) Fine-tuning of RNA functions by modification and editing. In Topics in Current Genetics. Hohmann, S. (ed.). New York: Springer Verlag, pp. 442.
  • Grosjean, H., Droogmans, L., Roovers, M., and Keith, G. (2007) Detection of enzymatic activity of transfer RNA modification enzymes using radiolabeled tRNA substrates. Methods Enzymol 425: 55101.
  • Gu, X.R., Gustafsson, C., Ku, J., Yu, M. and. Santi, D.V. (1999) Identification of the 16S rRNA m5C967 methyltransferase from Escherichia coli. Biochemistry 38: 40534057.
  • Gustafsson, C., and Persson, B.C. (1998) Identification of the rrmA gene encoding the 23S rRNA m1G745 methyltransferase in Escherichia coli and characterization of an m1G745-deficient mutant. J Bacteriol 180: 359365.
  • Gutgsell, N., Englund, N., Niu, L., Kaya, Y., Lane, B.G., and Ofengand, J. (2000) Deletion of the Escherichia coli pseudouridine synthase gene truB blocks formation of pseudouridine 55 in tRNA in vivo, does not affect exponential growth, but confers a strong selective disadvantage in competition with wild-type cells. RNA 6: 18701881.
  • Harms, J., Schluenzen, F., Zarivach, R., Bashan, A., Gat, S., Agmon, I., et al. (2001) High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107: 679688.
  • Helser, T.L., Davies, J.E., and Dahlberg, J.E. (1972) Mechanism of kasugamycin resistance in Escherichia coli. Nat New Biol 235: 69.
  • Huang, L., Ku, J., Pookanjanatavip, M., Gu, X., Wang, D., Greene, P.J., and Santi, D.V. (1998) Identification of two Escherichia coli pseudouridine synthases that show multisite specificity for 23S RNA. Biochemistry 37: 1595115957.
  • Johansen, S.K., Maus, C.E., Plikaytis, B.B., and Douthwaite, S. (2006) Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2′-O-methylations in 16S and 23S rRNAs. Mol Cell 23: 173182.
  • Kehrenberg, C., Schwarz, S., Jacobsen, L., Hansen, L.H., and Vester, B. (2005) A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Mol Microbiol 57: 10641073.
  • Kirpekar, F., and Krogh, T.N. (2001) RNA fragmentation studied in a matrix-assisted laser desorption/ionisation tandem quadropole/orthogonal time-of-flight mass spectrometer. Rapid Commun Mass Spectrom 15: 814.
  • Kirpekar, F., Douthwaite, S., and Roepstorff, P. (2000) Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry. RNA 6: 296306.
  • Kiss, T. (2001) Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J 20: 36173622.
  • Korostelev, A., Trakhanov, S., Laurberg, M., and Noller, H.F. (2006) Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126: 10651077.
  • Kovalic, D., Giannattasio, R.B., Jin, H.J., and Weisblum, B. (1994) 23S rRNA domain V, a fragment that can be specifically methylated in vitro by the ErmSF (TlrA) methyltransferase. J Bacteriol 176: 69926998.
  • Lafontaine, D.L., and Tollervey, D. (1998) Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. Trends Biochem Sci 23: 383388.
  • Lesnyak, D.V., Sergiev, P.V., Bogdanov, A.A., and Dontsova, O.A. (2006) Identification of Escherichia coli m2G methyltransferases. I. The ycbY gene encodes a methyltransferase specific for G2445 of the 23S rRNA. J Mol Biol 364: 2025.
  • Lesnyak, D.V., Osipiuk, J., Skarina, T., Sergiev, P.V., Bogdanov, A.A., Edwards, A., et al. (2007) Methyltransferase that modifies guanine 966 of the 16S rRNA: functional identification and tertiary structure. J Biol Chem 282: 58805887.
  • Long, K.S., Poehlsgaard, J., Kehrenberg, C., Schwarz, S., and Vester, B. (2006) The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics. Antimicrob Agents Chemother 50: 25002505.
  • Lovgren, J.M., and Wikstrom, P.M. (2001) The rlmB gene is essential for formation of Gm2251 in 23S rRNA but not for ribosome maturation in Escherichia coli. J Bacteriol 183: 69576960.
  • Maden, B.E.H., Corbett, M.E., Heeney, P.A., Pugh, K., and Ajuh, P.M. (1995) Classical and novel approaches to the detection and localization of the numerous modified nucleotides in eukaryotic ribosomal RNA. Biochimie 77: 2229.
  • Madsen, C.T., Mengel-Jorgensen, J., Kirpekar, F., and Douthwaite, S. (2003) Identifying the methyltransferases for m5U747 and m5U1939 in 23S rRNA using MALDI mass spectrometry. Nucleic Acids Res 31: 47384746.
  • Mann, P.A., Xiong, L., Mankin, A.S., Chau, A.S., Mendrick, C.A., Najarian, D.J., et al. (2001) EmtA, a rRNA methyltransferase conferring high-level evernimicin resistance. Mol Microbiol 41: 13491356.
  • Nissen, P., Hansen, J., Ban, N., Moore, P.B., and Steitz, T.A. (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289: 920930.
  • Noller, H.F. (1984) Structure of ribosomal RNA. Ann Rev Biochem 53: 119162.
  • Ofengand, J., and Del Campo, M. (2004) Modified nucleotides of Escherichia coli ribosomal RNA. In EcoSal – Escherichia coli and Salmonella: Cellular and Molecular Biology. Curtiss, R. (ed.). Washington, DC: American Society for Microbiology Press, chapter 4.6.1 (online). http://www.ecosal.org .
  • Okamoto, S., Tamaru, A., Nakajima, C., Nishimura, K., Tanaka, Y., Tokuyama, S., et al. (2007) Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol Microbiol 63: 10961106.
  • Poehlsgaard, J., and Douthwaite, S. (2005) The bacterial ribosome as a target for antibiotics. Nat Rev Microbiol 3: 870881.
  • Poldermans, B., Roza, L., and Van Knippenberg, P.H. (1979) Studies on the function of two adjacent N6,N6-dimethyladenosines near the 3′ end of 16S ribosomal RNA of Escherichia coli. III. Purification and properties of the methylating enzyme and methylase−30S interactions. J Biol Chem 254: 90949100.
  • Purta, E., Kaminska, K.H., Kasprzak, J.M., Bujnicki, J.M., and Douthwaite, S. (2008a) YbeA is the m3Ψ methyltransferase RlmH that targets nucleotide 1915 in 23S rRNA. RNA 14: 22342244.
  • Purta, E., O'Connor, M., Bujnicki, J., and Douthwaite, S. (2008b) YccW is the m5C methyltransferase specific for 23S rRNA nucleotide 1962. J Mol Biol 383: 641651.
  • Raychaudhuri, S., Conrad, J., Hall, B.G., and Ofengand, J. (1998) A pseudouridine synthase required for the formation of two universally conserved pseudouridines in ribosomal RNA is essential for normal growth of Escherichia coli. RNA 4: 14071417.
  • Reichow, S.L., Hamma, T., Ferre-D'Amare, A.R., and Varani, G. (2007) The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res 35: 14521464.
  • Rozenski, J., Crain, P.F., and McCloskey, J.A. (1999) The RNA modification database: 1999 update. Nucleic Acids Res 27: 196197.
  • Saka, K., Tadenuma, M., Nakade, S., Tanaka, N., Sugawara, H., Nishikawa, K., et al. (2005) A complete set of Escherichia coli open reading frames in mobile plasmids facilitating genetic studies. DNA Res 12: 6368.
  • Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • Schuwirth, B.S., Borovinskaya, M.A., Hau, C.W., Zhang, W., Vila-Sanjurjo, A., Holton, J.M., and Cate, J.H. (2005) Structures of the bacterial ribosome at 3.5 Å resolution. Science 310: 827834.
  • Selmer, M., Dunham, C.M., Murphy, F.V.T., Weixlbaumer, A., Petry, S., Kelley, A.C., et al. (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313: 19351942.
  • Sergiev, P.V., Lesnyak, D.V., Bogdanov, A.A., and Dontsova, O.A. (2006) Identification of Escherichia coli m2G methyltransferases. II. The ygjO gene encodes a methyltransferase specific for G1835 of the 23S rRNA. J Mol Biol 364: 2631.
  • Sergiev, P.V., Serebryakova, M.V., Bogdanov, A.A., and Dontsova, O.A. (2008) The ybiN gene of Escherichia coli encodes adenine-N6 methyltransferase specific for modification of A1618 of 23S ribosomal RNA, a methylated residue located close to the ribosomal exit tunnel. J Mol Biol 375: 291300.
  • Sirum-Connolly, K., and Mason, T.L. (1993) Functional requirement of a site-specific ribose methylation in ribosomal RNA. Science 262: 18861889.
  • Skinner, R., Cundliffe, E., and Schmidt, F.J. (1983) Site of action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. J Biol Chem 258: 1270212706.
  • Stern, S., Moazed, D., and Noller, H.F. (1988) Structural analysis of RNA using chemical and enzymatic probing monitored by primer extension. Methods Enzymol 164: 481489.
  • Tkaczuk, K.L., Dunin-Horkawicz, S., Purta, E., and Bujnicki, J.M. (2007) Structural and evolutionary bioinformatics of the SPOUT superfamily of methyltransferases. BMC Bioinformatics 8: 73.
  • Toh, S.-M., Xiong, L., Bae, T., and Mankin, A.S. (2008) The methyltransferase YfgB/RlmN is responsible for modification of adenosine 2503 in 23S rRNA. RNA 14: 98106.
  • Tran, E., Brown, J., and Maxwell, E.S. (2004) Evolutionary origins of the RNA-guided nucleotide-modification complexes: from the primitive translation apparatus? Trends Biochem Sci 29: 343350.
  • Treede, I., Jakobsen, L., Kirpekar, F., Vester, B., Weitnauer, G., Bechthold, A., and Douthwaite, S. (2003) The avilamycin resistance determinants AviRa and AviRb methylate 23S rRNA at the guanosine 2535 base and the uridine 2479 ribose. Mol Microbiol 49: 309318.
  • Tscherne, J.S., Nurse, K., Popienick, P., Michel, H., Sochacki, M., and Ofengand, J. (1999a) Purification, cloning, and characterization of the 16S RNA m5C967 methyltransferase from Escherichia coli. Biochemistry 38: 18841892.
  • Tscherne, J.S., Nurse, K., Popienick, P., and Ofengand, J. (1999b) Purification, cloning, and characterization of the 16 S RNA m2G1207 methyltransferase from Escherichia coli. J Biol Chem 274: 924929.
  • Vester, B., and Douthwaite, S. (1994) Domain V of 23S rRNA contains all the structural elements necessary for recognition by the ErmE methyltransferase. J Bacteriol 176: 69997004.
  • Wang, H., Boisvert, D., Kim, K.K., Kim, R., and Kim, S.H. (2000) Crystal structure of a fibrillarin homologue from Methanococcus jannaschii, a hyperthermophile, at 1.6 Å resolution. EMBO J 19: 317323.
  • Weisblum, B. (1995) Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother 39: 577585.
  • Wrzesinski, J., Bakin, A., Nurse, K., Lane, B.G., and Ofengand, J. (1995a) Purification, cloning, and properties of the 16S RNA pseudouridine 516 synthase from Escherichia coli. Biochemistry 34: 89048913.
  • Wrzesinski, J., Nurse, K., Bakin, A., Lane, B.G., and Ofengand, J. (1995b) A dual-specificity pseudouridine synthase: an Escherichia coli synthase purified and cloned on the basis of its specificity for Ψ746 in 23S RNA is also specific for Ψ32 in tRNAphe. RNA 1: 437448.