SEARCH

SEARCH BY CITATION

References

  • Abbott, I.A., and Hollenberg, G.J. (1976) Marine Algae of California. Stanford, CA: Stanford University Press.
  • Andreae, M.O., and Raemdonck, H. (1983) Dimethyl sulfide in the surface ocean and the marine atmosphere: a global view. Science 221: 744747.
  • Andreesen, J.R. (1994) Acetate via glycine: a different form of acetogenesis. In Acetogenesis. Drake, H.L. (ed). New York: Chapman & Hall, pp. 568629.
  • Asatoor, A.M., and Simenhoff, M.L. (1965) The origin of urinary dimethylamine. Biochim Biophys Acta 111: 384392.
  • Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidmann, J.G., Smith, J.A., and Struhl, K. (1997) Current Protocols in Molecular Biology. New York: J. Wiley & sons.
  • Boccazzi, P., Zhang, J.K., and Metcalf, W.W. (2000) Generation of dominant selectable markers for resistance to pseudomonic acid by cloning and mutagenesis of the ileS gene from the archaeon Methanosarcina barkeri Fusaro. J Bacteriol 182: 26112618.
  • Bose, A., and Metcalf, W.W. (2008) Distinct regulators control the expression of methanol methyltransferase isozymes in Methanosarcina acetivorans C2A. Mol Microbiol 67: 649661.
  • Bose, A., Pritchett, M.A., Rother, M., and Metcalf, W.W. (2006) Differential regulation of the three methanol methyltransferase isozymes in Methanosarcina acetivorans C2A. J Bacteriol 188: 72747283.
  • Burke, S.A., and Krzycki, J.A. (1997) Reconstitution of monomethylamine: coenzyme M methyl transfer with a corrinoid protein and two methyltransferases purified from Methanosarcina barkeri. J Biol Chem 272: 1657016577.
  • Chapman, D.J., and Tocher, R.D. (1966) Occurrence and production of carbon monoxide in some brown algae. Can J Bot 44: 14381442.
  • Datsenko, K.A., and Wanner, B.L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97: 66406645.
  • Deppenmeier, U., and Müller, V. (2008) Life close to the thermodynamic limit: how methanogenic archaea conserve energy. In Results Probl Cell Differ. Vol. 45. Richter, D. and Tiedge, H. (eds). Heidelberg: Springer, pp. 123152.
  • Deppenmeier, U., Johann, A., Hartsch, T., Merkl, R., Schmitz, R.A., Martinez-Arias, R., et al. (2002) The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol 4: 453461.
  • Drake, H.L., Küsel, K., and Matthies, C. (2002) Ecological consequences of the phylogenetic and physiological diversities of acetogens. Antonie Van Leeuwenhoek 81: 203213.
  • Ferguson, D.J., Jr and Krzycki, J.A. (1997) Reconstitution of trimethylamine-dependent coenzyme M methylation with the trimethylamine corrinoid protein and the isozymes of methyltransferase II from Methanosarcina barkeri. J Bacteriol 179: 846852.
  • Ferguson, D.J., Jr, Krzycki, J.A., and Grahame, D.A. (1996) Specific roles of methylcobamide: coenzyme M methyltransferase isozymes in metabolism of methanol and methylamines in Methanosarcina barkeri. J Biol Chem 271: 51895194.
  • Ferry, J.G. (1993) Fermentation of acetate. In Methanogenesis.Ferry, J.G. (ed). New York: Chapman & Hall, pp. 304334.
  • Galagan, J.E., Nusbaum, C., Roy, A., Endrizzi, M.G., Macdonald, P., FitzHugh, W., et al. (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12: 532542.
  • Gärtner, P., Ecker, A., Fischer, R., Linder, D., Fuchs, G., and Thauer, R.K. (1993) Purification and properties of N5-methyltetrahydromethanopterin: coenzyme M methyltransferase from Methanobacterium thermoautotrophicum. Eur J Biochem 213: 537545.
  • Guss, A.M., Rother, M., Zhang, J.K., Kulkarni, G., and Metcalf, W.W. (2008) New methods for tightly regulated gene expression and highly efficient chromosomal integration of cloned genes for Methanosarcina species. Archaea 2: 193203.
  • Haldimann, A., and Wanner, B.L. (2001) Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. J Bacteriol 183: 63846393.
  • Holtmann, G., Bakker, E.P., Uozumi, N., and Bremer, E. (2003) KtrAB and KtrCD: two K+ uptake systems in Bacillus subtilis and their role in adaptation to hypertonicity. J Bacteriol 185: 12891298.
  • Jiang, W., Metcalf, W.W., Lee, K.-S., and Wanner, B.L. (1995) Molecular cloning, mapping, and regulation of Pho regulon genes for phosphonate breakdown by the phosphonatase pathway of Salmonella typhimurium LT2. J Bacteriol 177: 64116421.
  • Keltjens, J.T., and Vogels, G.D. (1993) Conversion of methanol and methylamines to methane and carbon dioxide. In Methanogenesis.Ferry, J.G. (ed). New York: Chapman & Hall, pp. 253303.
  • Kiene, R.P., Oremland, R.S., Catena, A., Miller, L.G., and Capone, D.G. (1986) Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen. Appl Environ Microbiol 52: 10371045.
  • Kyhse-Andersen, J. (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Meth 10: 203209.
  • Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680685.
  • Lessner, D.J., Li, L., Li, Q., Rejtar, T., Andreev, V.P., Reichlen, M., et al. (2006) An unconventional pathway for reduction of CO2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics. Proc Natl Acad Sci U S A 103: 1792117926.
  • Ljungdahl, L.G. (1994) The acetyl-coA pathway and the chemiosmotic generation of ATP during acetogenesis. In: Acetogenesis.Ferry, J.G. (ed). New York: Chapman & Hall, pp. 6387.
  • Lomans, B.P., Van Der Drift, C., Pol, A., and Op den Camp, H.J. (2002) Microbial cycling of volatile organic sulfur compounds. Cell Mol Life Sci 59: 575588.
  • Maeder, D.L., Anderson, I., Brettin, T.S., Bruce, D.C., Gilna, P., Han, C.S., et al. (2006) The Methanosarcina barkeri genome: comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes. J Bacteriol 188: 79227931.
  • Metcalf, W.W., Zhang, J.K., Shi, X., and Wolfe, R.S. (1996) Molecular, genetic, and biochemical characterization of the serC gene of Methanosarcina barkeri Fusaro. J Bacteriol 178: 57975802.
  • Metcalf, W.W., Zhang, J.K., Apolinario, E., Sowers, K.R., and Wolfe, R.S. (1997) A genetic system for Archaea of the genus Methanosarcina: liposome-mediated transformation and construction of shuttle vectors. Proc Natl Acad Sci U S A 94: 26262631.
  • Moran, J.J., House, C.H., Vrentas, J.M., and Freeman, K.H. (2008) Methyl sulfide production by a novel carbon monoxide metabolism in Methanosarcina acetivorans. Appl Environ Microbiol 74: 540542.
  • Nelson, M.J., and Ferry, J.G. (1984) Carbon monoxide-dependent methyl coenzyme M methylreductase in acetotrophic Methosarcina spp. J Bacteriol 160: 526532.
  • Ni, S.S., Woese, C.R., Aldrich, H.C., and Boone, D.R. (1994) Transfer of Methanolobus siciliae to the genus Methanosarcina, naming it Methanosarcina siciliae, and emendation of the genus Methanosarcina. Int J Syst Bacteriol 44: 357359.
  • Oelgeschläger, E., and Rother, M. (2008) Carbon monoxide-dependent energy metabolism in anaerobic bacteria and archaea. Arch Microbiol 190: 257269.
  • Oelgeschläger, E., and Rother, M. (2009) Influence of carbon monoxide on metabolite formation in Methanosarcina acetivorans. FEMS Microbiol Lett 292: 254260.
  • Paul, L., and Krzycki, J.A. (1996) Sequence and transcript analysis of a novel Methanosarcina barkeri methyltransferase II homolog and its associated corrinoid protein homologous to methionine synthase. J Bacteriol 178: 65996607.
  • Pritchett, M.A., Zhang, J.K., and Metcalf, W.W. (2004) Development of a markerless genetic exchange method for Methanosarcina acetivorans C2A and its use in construction of new genetic tools for methanogenic archaea. Appl Environ Microbiol 70: 14251433.
  • Rother, M., and Metcalf, W.W. (2004) Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: An unusual way of life for a methanogenic archaeon. Proc Natl Acad Sci U S A 101: 1692916934.
  • Rother, M., and Metcalf, W.W. (2005) Genetic technologies for Archaea. Curr Opin Microbiol 8: 745751.
  • Rother, M., Boccazzi, P., Bose, A., Pritchett, M.A., and Metcalf, W.W. (2005) Methanol-dependent gene expression demonstrates that methyl-CoM reductase is essential in Methanosarcina acetivorans C2A and allows isolation of mutants with defects in regulation of the methanol utilization pathway. J Bacteriol 187: 55525559.
  • Rother, M., Oelgeschläger, E., and Metcalf, W.W. (2007) Genetic and proteomic analyses of CO utilization by Methanosarcina acetivorans. Arch Microbiol 188: 463472.
  • Sauer, K., Harms, U., and Thauer, R.K. (1997) Methanol: coenzyme M methyltransferase from Methanosarcina barkeri. Purification, properties and encoding genes of the corrinoid protein MT1. Eur J Biochem 243: 670677.
  • Saum, R., Mingote, A., Santos, H., and Müller, V. (2009) Genetic analysis of the role of the ABC transporter Ota and Otb in glycine betaine transport in Methanosarcina mazei Gö1. Arch Microbiol 191: 291301.
  • Schäfer, H., Miller, L.G., Oremland, R.S., and Murrell, J.C. (2007) Bacterial cycling of methyl halides. Adv Appl Microbiol 61: 307346.
  • Schmidt, K., Liaanen-Jensen, S., and Schlegel, H.G. (1963) Die Carotinoide der Thiorodaceae. Arch Mikrobiol 46: 117126.
  • Sowers, K.R., Baron, S.F., and Ferry, J.G. (1984) Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol 47: 971978.
  • Sowers, K.R., Boone, J.E., and Gunsalus, R.P. (1993) Disaggregation of Methanosarcina spp. & growth as single cells at elevated osmolarity. Appl Environ Microbiol 59: 38323839.
  • Studer, A., Stupperich, E., Vuilleumier, S., and Leisinger, T. (2001) Chloromethane: tetrahydrofolate methyl transfer by two proteins from Methylobacterium chloromethanicum strain CM4. Eur J Biochem 268: 29312938.
  • Tallant, T.C., and Krzycki, J.A. (1996) Coenzyme M methylase activity of the 480-kilodalton corrinoid protein from Methanosarcina barkeri. J Bacteriol 178: 12951301.
  • Tallant, T.C., and Krzycki, J.A. (1997) Methylthiol: coenzyme M methyltransferase from Methanosarcina barkeri, an enzyme of methanogenesis from dimethylsulfide and methylmercaptopropionate. J Bacteriol 179: 69026911.
  • Tallant, T.C., Paul, L., and Krzycki, J.A. (2001) The MtsA subunit of the methylthiol: coenzyme M methyltransferase of Methanosarcina barkeri catalyses both half-reactions of corrinoid-dependent dimethylsulfide: coenzyme M methyl transfer. J Biol Chem 276: 44854493.
  • Thauer, R.K., Kaster, A.K., Seedorf, H., Buckel, W., and Hedderich, R. (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6: 579591.
  • Tumbula, D.L., Bowen, T.L., and Whitman, W.B. (1994) Transformation of Methanococcus maripaludis and identification of a PstI-like restriction system. FEMS Microbiol Lett 121: 309314.
  • Vairavamurthy, A., Andreae, M.O., and Iverson, R.L. (1985) Biosynthesis of dimethylsulfide and dimethylpropiothetin by Hymenomonas carterae in relation to sulfur source and salinity variations. Limnol Oceanogr 30: 5970.
  • Wanner, B.L. (1986) Novel regulatory mutants of the phosphate regulon in Escherichia coli K-12. J Mol Biol 191: 3958.
  • Welander, P.V., and Metcalf, W.W. (2008) Mutagenesis of the C1 oxidation pathway in Methanosarcina barkeri: new insights into the Mtr/Mer bypass pathway. J Bacteriol 190: 19281936.
  • Wood, H.G. (1991) Life with CO or CO2 and H2 as a source of carbon and energy. FASEB J 5: 156163.
  • Zhang, J.K., Pritchett, M.A., Lampe, D.J., Robertson, H.M., and Metcalf, W.W. (2000) In vivo transposon mutagenesis of the methanogenic archaeon Methanosarcina acetivorans C2A using a modified version of the insect mariner-family transposable element Himar1. Proc Natl Acad Sci U S A 97: 96659670.
  • Zinder, S.H., and Brock, T.D. (1978) Methane, carbon dioxide, and hydrogen sulfide production from the terminal methiol group of methionine by anaerobic lake sediments. Appl Environ Microbiol 35: 344352.