SEARCH

SEARCH BY CITATION

References

  • Abeyrathne, P.D., and Lam, J.S. (2007) WaaL of Pseudomonas aeruginosa utilizes ATP in in vitro ligation of O antigen onto lipid A-core. Mol Microbiol 65: 13451359.
  • Abeyrathne, P.D., Daniels, C., Poon, K.K., Matewish, M.J., and Lam, J.S. (2005) Functional characterization of WaaL, a ligase associated with linking O-antigen polysaccharide to the core of Pseudomonas aeruginosa lipopolysaccharide. J Bacteriol 187: 30023012.
  • Bernatchez, S., Szymanski, C.M., Ishiyama, N., Li, J., Jarrell, H.C., Lau, P.C., et al. (2005) A single bifunctional UDP-GlcNAc/Glc 4-epimerase supports the synthesis of three cell surface glycoconjugates in Campylobacter jejuni. J Biol Chem 280: 47924802.
  • Branda, S.S., Vik, S., Friedman, L., and Kolter, R. (2005) Biofilms: the matrix revisited. Trends Microbiol 13: 2026.
  • Bystrova, O.V., Knirel, Y.A., Lindner, B., Kocharova, N.A., Kondakova, A.N., Zahringer, U., and Pier, G.B. (2006) Structures of the core oligosaccharide and O-units in the R- and SR-type lipopolysaccharides of reference strains of Pseudomonas aeruginosa O-serogroups. FEMS Immunol Med Microbiol 46: 8599.
  • Campisano, A., Schroeder, C., Schemionek, M., Overhage, J., and Rehm, B.H. (2006) PslD is a secreted protein required for biofilm formation by Pseudomonas aeruginosa. Appl Environ Microbiol 72: 30663068.
  • Choudhury, B., Carlson, R.W., and Goldberg, J.B. (2005) The structure of the lipopolysaccharide from a galU mutant of Pseudomonas aeruginosa serogroup-O11. Carbohydr Res 340: 27612772.
  • Ciucanu, I., and Kerek, F. (1984) A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res 131: 209217.
  • Dong, C., Major, L.L., Srikannathasan, V., Errey, J.C., Giraud, M.F., Lam, J.S., et al. (2007) RmlC, a C3′ and C5′-carbohydrate epimerase, appears to operate via an intermediate with an unusual twist boat conformation. J Mol Biol 365: 146159.
  • Driscoll, J.A., Brody, S.L., and Kollef, M.H. (2007) The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 67: 351368.
  • Dubois, M. (1956) Colorimetric methods for determination of sugars and related substances. Anal Biochem 28: 350356.
  • Friedman, L., and Kolter, R. (2004a) Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol 51: 675690.
  • Friedman, L., and Kolter, R. (2004b) Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 186: 44574465.
  • Goodman, A.L., Kulasekara, B., Rietsch, A., Boyd, D., Smith, R.S., and Lory, S. (2004) A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 7: 745754.
  • Govan, J.R., and Deretic, V. (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60: 539574.
  • Hancock, R.E., Mutharia, L.M., Chan, L., Darveau, R.P., Speert, D.P., and Pier, G.B. (1983) Pseudomonas aeruginosa isolates from patients with cystic fibrosis: a class of serum-sensitive, nontypable strains deficient in lipopolysaccharide O side chains. Infect Immun 42: 170177.
  • Hickman, J.W., Tifrea, D.F., and Harwood, C.S. (2005) A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci USA 102: 1442214427.
  • Hitchcock, P.J., and Brown, T.M. (1983) Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol 154: 269277.
  • Holloway, B.W. (1955) Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol 13: 572581.
  • Honko, A.N., Sriranganathan, N., Lees, C.J., and Mizel, S.B. (2006) Flagellin is an effective adjuvant for immunization against lethal respiratory challenge with Yersinia pestis. Infect Immun 74: 11131120.
  • Jackson, K.D., Starkey, M., Kremer, S., Parsek, M.R., and Wozniak, D.J. (2004) Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J Bacteriol 186: 44664475.
  • Jayaratne, P., Bronner, D., MacLachlan, P.R., Dodgson, C., Kido, N., and Whitfield, C. (1994) Cloning and analysis of duplicated rfbM and rfbK genes involved in the formation of GDP-mannose in Escherichia coli O9:K30 and participation of rfb genes in the synthesis of the group I, K30 capsular polysaccharide. J Bacteriol 176: 31263139.
  • Kocharova, N.A., Knirel, Y.A., Shashkov, A.S., Kochetkov, N.K., and Pier, G.B. (1988) Structure of an extracellular cross-reactive polysaccharide from Pseudomonas aeruginosa immunotype 4. J Biol Chem 263: 1129111295.
  • Komarova, B.S., Tsvetkov, Y.E., Pier, G.B., and Nifantiev, N.E. (2008) First synthesis of pentasaccharide glycoform I of the outer core region of the Pseudomonas aeruginosa lipopolysaccharide. J Org Chem 73: 84118421.
  • Lam, J.S., MacDonald, L.A., Lam, M.Y., Duchesne, L.G., and Southam, G.G. (1987) Production and characterization of monoclonal antibodies against serotype strains of Pseudomonas aeruginosa. Infect Immun 55: 10511057.
  • Lam, M.Y., McGroarty, E.J., Kropinski, A.M., MacDonald, L.A., Pedersen, S.S., Hoiby, N., and Lam, J.S. (1989) Occurrence of a common lipopolysaccharide antigen in standard and clinical strains of Pseudomonas aeruginosa. J Clin Microbiol 27: 962967.
  • Lee, H.J., Chang, H.Y., Venkatesan, N., and Peng, H.L. (2008) Identification of amino acid residues important for the phosphomannose isomerase activity of PslB in Pseudomonas aeruginosa PAO1. FEBS Lett 582: 34793483.
  • Ma, L., Jackson, K.D., Landry, R.M., Parsek, M.R., and Wozniak, D.J. (2006) Analysis of Pseudomonas aeruginosa conditional psl variants reveals roles for the psl polysaccharide in adhesion and maintaining biofilm structure postattachment. J Bacteriol 188: 82138221.
  • Ma, L., Lu, H., Sprinkle, A., Parsek, M.R., and Wozniak, D.J. (2007) Pseudomonas aeruginosa Psl is a galactose- and mannose-rich exopolysaccharide. J Bacteriol 189: 83538356.
  • Ma, L., Conover, M., Lu, H., Parsek, M.R., Bayles, K., and Wozniak, D.J. (2009) Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 5: e1000354.
  • Maki, M., Jarvinen, N., Rabina, J., Roos, C., Maaheimo, H., and Renkonen, R. (2002) Functional expression of Pseudomonas aeruginosa GDP-4-keto-6-deoxy-d-mannose reductase which synthesizes GDP-rhamnose. Eur J Biochem 269: 593601.
  • Matsukawa, M., and Greenberg, E.P. (2004) Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J Bacteriol 186: 44494456.
  • Parise, G., Mishra, M., Itoh, Y., Romeo, T., and Deora, R. (2007) Role of a putative polysaccharide locus in Bordetella biofilm development. J Bacteriol 189: 750760.
  • Parsek, M.R., and Singh, P.K. (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57: 677701.
  • Poon, K.K., Westman, E.L., Vinogradov, E., Jin, S., and Lam, J.S. (2008) Functional characterization of MigA and WapR: putative rhamnosyltransferases involved in outer core oligosaccharide biosynthesis of Pseudomonas aeruginosa. J Bacteriol 190: 18571865.
  • Rahim, R., Burrows, L.L., Monteiro, M.A., Perry, M.B., and Lam, J.S. (2000) Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. Microbiology 146 (Pt 11): 28032814.
  • Ramsey, D.M., and Wozniak, D.J. (2005) Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol 56: 309322.
  • Rivera, M., and McGroarty, E.J. (1989) Analysis of a common-antigen lipopolysaccharide from Pseudomonas aeruginosa. J Bacteriol 171: 22442248.
  • Rivera, M., Bryan, L.E., Hancock, R.E., and McGroarty, E.J. (1988) Heterogeneity of lipopolysaccharides from Pseudomonas aeruginosa: analysis of lipopolysaccharide chain length. J Bacteriol 170: 512521.
  • Rocchetta, H.L., and Lam, J.S. (1997) Identification and functional characterization of an ABC transport system involved in polysaccharide export of A-band lipopolysaccharide in Pseudomonas aeruginosa. J Bacteriol 179: 47134724.
  • Rocchetta, H.L., Pacan, J.C., and Lam, J.S. (1998) Synthesis of the A-band polysaccharide sugar d-rhamnose requires Rmd and WbpW: identification of multiple AlgA homologues, WbpW and ORF488, in Pseudomonas aeruginosa. Mol Microbiol 29: 14191434.
  • Rocchetta, H.L., Burrows, L.L., and Lam, J.S. (1999) Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 63: 523553.
  • Ryder, C., Byrd, M., and Wozniak, D.J. (2007) Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol 10: 644648.
  • Sadovskaya, I., Brisson, J.R., Lam, J.S., Richards, J.C., and Altman, E. (1998) Structural elucidation of the lipopolysaccharide core regions of the wild-type strain PAO1 and O-chain-deficient mutant strains AK1401 and AK1012 from Pseudomonas aeruginosa serotype O5. Eur J Biochem 255: 673684.
  • Sadovskaya, I., Brisson, J.R., Thibault, P., Richards, J.C., Lam, J.S., and Altman, E. (2000) Structural characterization of the outer core and the O-chain linkage region of lipopolysaccharide from Pseudomonas aeruginosa serotype O5. Eur J Biochem 267: 16401650.
  • Sadovskaya, I., Vinogradov, E., Li, J., and Jabbouri, S. (2004) Structural elucidation of the extracellular and cell-wall teichoic acids of Staphylococcus epidermidis RP62A, a reference biofilm-positive strain. Carbohydr Res 339: 14671473.
  • Samuel, G., and Reeves, P. (2003) Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohydr Res 338: 25032519.
  • Shinabarger, D., Berry, A., May, T.B., Rothmel, R., Fialho, A., and Chakrabarty, A.M. (1991) Purification and characterization of phosphomannose isomerase-guanosine diphospho-d-mannose pyrophosphorylase. A bifunctional enzyme in the alginate biosynthetic pathway of Pseudomonas aeruginosa. J Biol Chem 266: 20802088.
  • Soberon-Chavez, G., Lepine, F., and Deziel, E. (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68: 718725.
  • Starkey, M., Hickman, J.H., Ma, L., Zhang, N., De Long, S., Hinz, A., et al. (2009) Pseudomonas aeruginosa rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung. J Bacteriol 191: 34923503.
  • Stewart, P.S., and Costerton, J.W. (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358: 135138.
  • Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., et al. (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406: 959964.
  • Toh, E., Kurtz, H.D., Jr, and Brun, Y.V. (2008) Characterization of the Caulobacter crescentus holdfast polysaccharide biosynthesis pathway reveals significant redundancy in the initiating glycosyltransferase and polymerase steps. J Bacteriol 190: 72197231.
  • Vasseur, P., Vallet-Gely, I., Soscia, C., Genin, S., and Filloux, A. (2005) The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation. Microbiology 151: 985997.
  • Vasseur, P., Soscia, C., Voulhoux, R., and Filloux, A. (2007) PelC is a Pseudomonas aeruginosa outer membrane lipoprotein of the OMA family of proteins involved in exopolysaccharide transport. Biochimie 89: 903915.
  • Vinogradov, E., Sadovskaya, I., Li, J., and Jabbouri, S. (2006) Structural elucidation of the extracellular and cell-wall teichoic acids of Staphylococcus aureus MN8m, a biofilm forming strain. Carbohydr Res 341: 738743.
  • Wang, X., Preston, J.F., 3rd, and Romeo, T. (2004) The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 186: 27242734.
  • Whitfield, C., and Roberts, I.S. (1999) Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol Microbiol 31: 13071319.
  • Wozniak, D.J., and Ohman, D.E. (1994) Transcriptional analysis of the Pseudomonas aeruginosa genes algR, algB, and algD reveals a hierarchy of alginate gene expression which is modulated by algT. J Bacteriol 176: 60076014.
  • Wozniak, D.J., Wyckoff, T.J., Starkey, M., Keyser, R., Azadi, P., O'Toole, G.A., and Parsek, M.R. (2003) Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci USA 100: 79077912.