SEARCH

SEARCH BY CITATION

References

  • Abachin, E., Poyart, C., Pellegrini, E., Milohanic, E., Fiedler, F., Berche, P., and Trieu-Cuot, P. (2002) Formation of d-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol Microbiol 43: 114.
  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997) Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25: 33893402.
  • Berg, S., Edman, M., Li, L., Wikstrom, M., and Wieslander, A. (2001) Sequence properties of the 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii membranes. Recognition of a large group of lipid glycosyltransferases in eubacteria and archaea. J Biol Chem 276: 2205622063.
  • Bishop, D.K., and Hinrichs, D.J. (1987) Adoptive transfer of immunity to Listeria monocytogenes. The influence of in vitro stimulation on lymphocyte subset requirements. J Immunol 139: 20052009.
  • Braun, L., Dramsi, S., Dehoux, P., Bierne, H., Lindahl, G., and Cossart, P. (1997) InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association. Mol Microbiol 25: 285294.
  • Braun, L., Ohayon, H., and Cossart, P. (1998) The InIB protein of Listeria monocytogenes is sufficient to promote entry into mammalian cells. Mol Microbiol 27: 10771087.
  • Camilli, A., Tilney, L.G., and Portnoy, D.A. (1993) Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol Microbiol 8: 143157.
  • Campbell, J.A., Davies, G.J., Bulone, V., and Henrissat, B. (1997) A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 326 (Part 3): 929939.
  • Doran, K.S., Engelson, E.J., Khosravi, A., Maisey, H.C., Fedtke, I., Equils, O., et al. (2005) Blood–brain barrier invasion by group B Streptococcus depends upon proper cell-surface anchoring of lipoteichoic acid. J Clin Invest 115: 24992507.
  • Edman, M., Berg, S., Storm, P., Wikström, M., Vikström, S., Öhman, A., and Wieslander, A. (2003) Structural features of glycosyltransferases synthesizing major bilayer and nonbilayer-prone membrane lipids in Acholeplasma laidlawii and Streptococcus pneumoniae. J Biol Chem 278: 84208428.
  • Edwards, M.R., and Stevens, R.W. (1963) Fine structure of Listeria monocytogenes. J Bacteriol 86: 414428.
  • Fedtke, I., Mader, D., Kohler, T., Moll, H., Nicholson, G., Biswas, R., et al. (2007) A Staphylococcus aureus ypfP mutant with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial surface properties and autolysin activity. Mol Microbiol 65: 10781091.
  • Fischer, W. (1981) Glycerophosphoglycolipids, presumptive biosynthetic precursors of lipoteichoic acids. In Chemistry and Biological Activities of Bacterial Surface Amphiphiles. Shockman, G.D., and Wicken, A.J. (eds). New York: Academic Press, pp. 209228.
  • Fischer, W. (1988) Physiology of lipoteichoic acids in bacteria. Adv Microb Physiol 29: 233302.
  • Fischer, W. (1990) Bacterial phosphoglycolipids and lipoteichoic acids. In Handbook of Lipid Research. Hanahan, D. (ed). New York: Plenum Press, pp. 123234.
  • Fischer, W., and Leopold, K. (1999) Polar lipids of four Listeria species containing l-lysylcardiolipin, a novel lipid structure, and other unique phospholipids. Int J Syst Bacteriol 49 (Part 2): 653662.
  • Fischer, W., Nakano, M., Laine, R.A., and Bohrer, W. (1978) On the relationship between glycerophosphoglycolipids and lipoteichoic acids in Gram-positive bacteria. I. The occurrence of phosphoglycolipids. Biochim Biophys Acta 528: 288297.
  • Fischer, W., Mannsfeld, T., and Hagen, G. (1990) On the basic structure of poly(glycerophosphate) lipoteichoic acids. Biochem Cell Biol 68: 3343.
  • Glaser, P., Frangeul, L., Buchrieser, C., Rusniok, C., Amend, A., Baquero, F., et al. (2001) Comparative genomics of Listeria species. Science 294: 849852.
  • Gründling, A., and Schneewind, O. (2007a) Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. Proc Natl Acad Sci USA 104: 84788483.
  • Gründling, A., and Schneewind, O. (2007b) Genes required for glycolipid synthesis and lipoteichoic acid anchoring in Staphylococcus aureus. J Bacteriol 189: 25212530.
  • Gründling, A., Burrack, L.S., Bouwer, H.G., and Higgins, D.E. (2004) Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. Proc Natl Acad Sci USA 101: 1231812323.
  • Hether, N.W., and Jackson, L.L. (1983) Lipoteichoic acid from Listeria monocytogenes. J Bacteriol 156: 809817.
  • Horton, R.M., Hunt, H.D., Ho, S.N., Pullen, J.K., and Pease, L.R. (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77: 6168.
  • Jonquieres, R., Bierne, H., Fiedler, F., Gounon, P., and Cossart, P. (1999) Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of gram-positive bacteria. Mol Microbiol 34: 902914.
  • Jorasch, P., Wolter, F.P., Zahringer, U., and Heinz, E. (1998) A UDP glucosyltransferase from Bacillus subtilis successively transfers up to four glucose residues to 1,2-diacylglycerol: expression of ypfP in Escherichia coli and structural analysis of its reaction products. Mol Microbiol 29: 419430.
  • Jorasch, P., Warnecke, D.C., Lindner, B., Zahringer, U., and Heinz, E. (2000) Novel processive and nonprocessive glycosyltransferases from Staphylococcus aureus and Arabidopsis thaliana synthesize glycoglycerolipids, glycophospholipids, glycosphingolipids and glycosylsterols. Eur J Biochem 267: 37703783.
  • Kates, M. (1972) Techniques of lipidology. In Laboratory Techniques in Biochemistry and Molecular Biology. Work, T.S., and Work, E. (eds). New York: American Elsevier, pp. 347469.
  • Kiriukhin, M.Y., Debabov, D.V., Shinabarger, D.L., and Neuhaus, F.C. (2001) Biosynthesis of the glycolipid anchor in lipoteichoic acid of Staphylococcus aureus RN4220: role of YpfP, the diglucosyldiacylglycerol synthase. J Bacteriol 183: 35063514.
  • Kosaric, N., and Carroll, K.K. (1971) Phospholipids of Listeria monocytogenes. Biochim Biophys Acta 239: 428442.
  • Kreiswirth, B.N., Lofdahl, S., Betley, M.J., O'Reilly, M., Schlievert, P.M., Bergdoll, M.S., and Novick, R.P. (1983) The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305: 709712.
  • Lauer, P., Chow, M.Y.N., Loessner, M.J., Portnoy, D.A., and Calendar, R. (2002) Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J Bacteriol 184: 41774186.
  • Lee, C.Y., Buranen, S.L., and Ye, Z.H. (1991) Construction of single-copy integration vectors for Staphylococcus aureus. Gene 103: 101105.
  • Lu, D., Wörmann, M.E., Zhang, X., Schneewind, O., Gründling, A., and Freemont, P.S. (2009) Structure-based mechanism of lipoteichoic acid synthesis by Staphylococcus aureus LtaS. Proc Natl Acad Sci USA 106: 15841589.
  • Navarre, W.W., and Schneewind, O. (1999) Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63: 174229.
  • Oku, Y., Kurokawa, K., Matsuo, M., Yamada, S., Lee, B.L., and Sekimizu, K. (2009) Pleiotropic roles of polyglycerolphosphate synthase of lipoteichoic acid in growth of Staphylococcus aureus cells. J Bacteriol 191: 141151.
  • Park, S.F., and Stewart, G.S. (1990) High-efficiency transformation of Listeria monocytogenes by electroporation of penicillin-treated cells. Gene 94: 129132.
  • Peschel, A., Otto, M., Jack, R.W., Kalbacher, H., Jung, G., and Götz, F. (1999) Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274: 84058410.
  • Rahman, O., Dover, L.G., and Sutcliffe, I.C. (2009) Lipoteichoic acid biosynthesis: two steps forwards, one step sideways? Trends Microbiol 17: 219225.
  • Schirner, K., Marles-Wright, J., Lewis, R.J., and Errington, J. (2009) Distinct and essential morphogenic functions for wall- and lipo-teichoic acids in Bacillus subtilis. EMBO J 28: 830842.
  • Simon, R., Priefer, U., and Pühler, A. (1983) A broad host range mobilization system for in vitro genetic engineering: transposon mutagenesis in Gram negative bacteria. Biotechnology 1: 784791.
  • Smith, K., and Youngman, P. (1992) Use of a new integrational vector to investigate compartment-specific expression of the Bacillus subtilis spoIIM gene. Biochimie 74: 705711.
  • Theilacker, C., Sanchez-Carballo, P., Toma, I., Fabretti, F., Sava, I., Kropec, A., et al. (2009) Glycolipids are involved in biofilm accumulation and prolonged bacteraemia in Enterococcus faecalis. Mol Microbiol 71: 10551069.
  • Thomaides, H.B., Freeman, M., El Karoui, M., and Errington, J. (2001) Division site selection protein DivIVA of Bacillus subtilis has a second distinct function in chromosome segregation during sporulation. Genes Dev 15: 16621673.
  • Uchikawa, K., Sekikawa, I., and Azuma, I. (1986) Structural studies on lipoteichoic acids from four Listeria strains. J Bacteriol 168: 115122.
  • Weidenmaier, C., and Peschel, A. (2008) Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat Rev 6: 276287.