SEARCH

SEARCH BY CITATION

References

  • Andersson, D.I., Slechta, E.S., and Roth, J.R. (1998) Evidence that gene amplification underlies adaptive mutability of the bacterial lac operon. Science 282: 11331135.
  • Aye, M., Irwin, B., Beliakova-Bethell, N., Chen, E., Garrus, J., and Sandmeyer, S. (2004) Host factors that affect Ty3 retrotransposition in Saccharomyces cerevisiae. Genetics 168: 11591176.
  • Barker, C.S., Pruss, B.M., and Matsumura, P. (2004) Increased motility of Escherichia coli by insertion sequence element integration into the regulatory region of the flhD operon. J Bacteriol 186: 75297537.
  • Cairns, J., and Foster, P.L. (1991) Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics 128: 695701.
  • Cairns, J., Overbaugh, J., and Miller, S. (1988) The origin of mutants. Nature 335: 142145.
  • Cashel, M., Gentry, D.R., Hernandez V.D., and Vinella, D. (1996) The stringent response. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. Neidhardt, F.C., Curtiss, R., III, Ingraham, J.L., Lin, E.C.C., Low, K.B., Magasanik, B., et al. (eds). Washington, DC: American Society for Microbiology Press, pp. 14581496.
  • Chaconas, G., Lavoie, B.D., and Watson, M.A. (1996) DNA transposition: jumping gene machine, some assembly required. Curr Biol 6: 817820.
  • Chalmers, R., Guhathakurta, A., Benjamin, H., and Kleckner, N. (1998) IHF modulation of Tn10 transposition: sensory transduction of supercoiling status via a proposed protein/DNA molecular spring. Cell 93: 897908.
  • Chandler, M., and Mahillon, J. (2002) Insertion sequences revised. In Mobile DNA II. Craig, N.L., Craigie, R.G., Gellert, M., and Lambowitz, A.M. (eds). Washington, DC: American Society for Microbiology Press, pp. 305366.
  • Chen, Y.M., Lu, Z., and Lin, E.C. (1989) Constitutive activation of the fucAO operon and silencing of the divergently transcribed fucPIK operon by an IS5 element in Escherichia coli mutants selected for growth on l-1,2-propanediol. J Bacteriol 171: 60976105.
  • Datsenko, K.A., and Wanner, B.L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 66406645.
  • Denamur, E., and Matic, I. (2006) Evolution of mutation rates in bacteria. Mol Microbiol 60: 820827.
  • Ebright, R.H., and Beckwith, J. (1985) The catabolite gene activator protein (CAP) is not required for indole-3-acetic acid to activate transcription of the araBAD operon of Escherichia coli K-12. Mol Gen Genet 201: 5155.
  • Foster, P.L. (1997) Nonadaptive mutations occur on the F′ episome during adaptive mutation conditions in Escherichia coli. J Bacteriol 179: 15501554.
  • Foster, P.L. (1999) Mechanisms of stationary phase mutation: a decade of adaptive mutation. Annu Rev Genet 33: 5788.
  • Foster, P.L. (2005) Stress responses and genetic variation in bacteria. Mutat Res 569: 311.
  • Galas, D.J. (1989) Bacterial insertion sequences. In Mobile DNA. Berg, D., and Howe, M. (eds). Washington, DC: American Society for Microbiology, pp. 109162.
  • Galhardo, R.S., Hastings, P.J., and Rosenberg, S.M. (2007) Mutation as a stress response and the regulation of evolvability. Crit Rev Biochem Mol Biol 42: 399435.
  • Gosset, G., Zhang, Z., Nayyar, S., Cuevas, W.A., and Saier, M.H., Jr (2004) Transcriptome analysis of Crp-dependent catabolite control of gene expression in Escherichia coli. J Bacteriol 186: 35163524.
  • Gulati, A., and Mahadevan, S. (2000) Mechanism of catabolite repression in the bgl operon of Escherichia coli: involvement of the anti-terminator BglG, CRP-cAMP and EIIAGlc in mediating glucose effect downstream of transcription initiation. Genes Cells 5: 239250.
  • Hall, B.G. (1998) Activation of the bgl operon by adaptive mutation. Mol Biol Evol 15: 15.
  • Hall, B.G. (1999) Spectra of spontaneous growth-dependent and adaptive mutations at ebgR. J Bacteriol 181: 11491155.
  • Harris, R.S., Longerich, S., and Rosenberg, S.M. (1994) Recombination in adaptive mutation. Science 264: 258260.
  • Hastings, P.J., Bull, H.J., Klump, J.R., and Rosenberg, S.M. (2000) Adaptive amplification: an inducible chromosomal instability mechanism. Cell 103: 723731.
  • Hastings, P.J., Slack, A., Petrosino, J.F., and Rosenberg, S.M. (2004) Adaptive amplification and point mutation are independent mechanisms: evidence for various stress-inducible mutation mechanisms. PLoS Biol 2: e399.
  • Hendrickson, H., Slechta, E.S., Bergthorsson, U., Andersson, D.I., and Roth, J.R. (2002) Amplification-mutagenesis: evidence that ‘directed’ adaptive mutation and general hypermutability result from growth with a selected gene amplification. Proc Natl Acad Sci USA 99: 21642169.
  • Lavoie, B.D., and Chaconas, G. (1993) Site-specific HU binding in the Mu transpososome: conversion of a sequence-independent DNA-binding protein into a chemical nuclease. Genes Dev 7: 25102519.
  • Lin, E.C. (1976) Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol 30: 535578.
  • Lin, E.C.C. (1996) Dissimilatory pathways for sugars, polyols, and carboxylates. In Escherichia coli and Salmonella: Cellular and Molecular Biology. Neidhardt, D.C. (ed.). Washington, DC: American Society for Microbiology Press, pp. 307342.
  • Lombardo, M.J., Aponyi, I., and Rosenberg, S.M. (2004) General stress response regulator RpoS in adaptive mutation and amplification in Escherichia coli. Genetics 166: 669680.
  • Luria, S.E., and Delbrück, M. (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28: 491511.
  • McCalla, D.R. (1979) Mechanism of Action of Antibacterial Agents. Berlin: Springer-Verlag.
  • Mahillon, J., and Chandler, M. (1998) Insertion sequences. Microbiol Mol Biol Rev 62: 725774.
  • Massey, R.C., and Buckling, A. (2002) Environmental regulation of mutation rates at specific sites. Trends Microbiol 10: 580584.
  • Miller, J.H. (1972) Experiments in Molecular Genetics. New York: Cold Spring Harbor Laboratory.
  • Muramatsu, S., Kato, M., Kohara, Y., and Mizuno, T. (1988) Insertion sequence IS5 contains a sharply curved DNA structure at its terminus. Mol Gen Genet 214: 433438.
  • Petersen, C., Moller, L.B., and Valentin-Hansen, P. (2002) The cryptic adenine deaminase gene of Escherichia coli. Silencing by the nucleoid-associated DNA-binding protein, H-NS, and activation by insertion elements. J Biol Chem 277: 3137331380.
  • Petes, T.D., and Hill, C.W. (1988) Recombination between repeated genes in microorganisms. Annu Rev Genet 22: 147168.
  • Ponder, R.G., Fonville, N.C., and Rosenberg, S.M. (2005) A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation. Mol Cell 19: 791804.
  • Reimers, J.M., Schmidt, K.H., Longacre, A., Reschke, D.K., and Wright, B.E. (2004) Increased transcription rates correlate with increased reversion rates in leuB and argH Escherichia coli auxotrophs. Microbiology 150: 14571466.
  • Reynolds, A.E., Felton, J., and Wright, A. (1981) Insertion of DNA activates the cryptic bgl operon in E. coli K12. Nature 293: 625629.
  • Roberts, D., Hoopes, B.C., McClure, W.R., and Kleckner, N. (1985) IS10 transposition is regulated by DNA adenine methylation. Cell 43: 117130.
  • Rosenberg, S.M. (2001) Evolving responsively: adaptive mutation. Nat Rev Genet 2: 504515.
  • Roth, J.R., Benson, N., Galitski, T., Haack, K., Lawrence, J.G., and Miesel, L. (1996) Rearrangements of the bacterial chromosome: formation and application. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. Niedhardt, F.C. (ed.). Washington, DC: American Society for Microbiology Press, pp. 147168.
  • Roth, J.R., and Andersson, D.I. (2004) Amplification-mutagenesis – how growth under selection contributes to the origin of genetic diversity and explains the phenomenon of adaptive mutation. Res Microbiol 155: 342351.
  • Roth, J.R., Kugelberg, E., Reams, A.B., Kofoid, E., and Andersson, D.I. (2006) Origin of mutations under selection: the adaptive mutation controversy. Annu Rev Microbiol 60: 477501.
  • Schnetz, K., and Rak, B. (1992) IS5: a mobile enhancer of transcription in Escherichia coli. Proc Natl Acad Sci USA 89: 12441248.
  • Scholes, D.T., Banerjee, M., Bowen, B., and Curcio, M.J. (2001) Multiple regulators of Ty1 transposition in Saccharomyces cerevisiae have conserved roles in genome maintenance. Genetics 159: 14491465.
  • Sekine, Y., Eisaki, N., and Ohtsubo, E. (1994) Translational control in production of transposase and in transposition of insertion sequence IS3. J Mol Biol 235: 14061420.
  • Simons, R.W., Houman, F., and Kleckner, N. (1987) Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53: 8596.
  • Slack, A., Thornton, P.C., Magner, D.B., Rosenberg, S.M., and Hastings, P.J. (2006) On the mechanism of gene amplification induced under stress in Escherichia coli. PLoS Genet 2: e48.
  • Soutourina, O., Kolb, A., Krin, E., Laurent-Winter, C., Rimsky, S., Danchin, A., and Bertin, P. (1999) Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol 181: 75007508.
  • Surette, M.G., and Chaconas, G. (1989) A protein factor which reduces the negative supercoiling requirement in the Mu DNA strand transfer reaction is Escherichia coli integration host factor. J Biol Chem 264: 30283034.
  • Swingle, B., O'Carroll, M., Haniford, D., and Derbyshire, K.M. (2004) The effect of host-encoded nucleoid proteins on transposition: H-NS influences targeting of both IS903 and Tn10. Mol Microbiol 52: 10551067.
  • Torkelson, J., Harris, R.S., Lombardo, M.J., Nagendran, J., Thulin, C., and Rosenberg, S.M. (1997) Genome-wide hypermutation in a subpopulation of stationary-phase cells underlies recombination-dependent adaptive mutation. EMBO J 16: 33033311.
  • Twiss, E., Coros, A.M., Tavakoli, N.P., and Derbyshire, K.M. (2005) Transposition is modulated by a diverse set of host factors in Escherichia coli and is stimulated by nutritional stress. Mol Microbiol 57: 15931607.
  • Weissenborn, D.L., Wittekindt, N., and Larson, T.J. (1992) Structure and regulation of the glpFK operon encoding glycerol diffusion facilitator and glycerol kinase of Escherichia coli K-12. J Biol Chem 267: 61226131.
  • Whiteway, J., Koziarz, P., Veall, J., Sandhu, N., Kumar, P., Hoecher, B., and Lambert, I.B. (1998) Oxygen-insensitive nitroreductases: analysis of the roles of nfsA and nfsB in development of resistance to 5-nitrofuran derivatives in Escherichia coli. J Bacteriol 180: 55295539.
  • Wright, B.E. (2004) Stress-directed adaptive mutations and evolution. Mol Microbiol 52: 643650.
  • Wright, B.E., and Minnick, M.F. (1997) Reversion rates in a leuB auxotroph of Escherichia coli K-12 correlate with ppGpp levels during exponential growth. Microbiology 143 (Part 3): 847854.
  • Wright, B.E., Longacre, A., and Reimers, J.M. (1999) Hypermutation in derepressed operons of Escherichia coli K12. Proc Natl Acad Sci USA 96: 50895094.
  • Yin, J.C., Krebs, M.P., and Reznikoff, W.S. (1988) Effect of dam methylation on Tn5 transposition. J Mol Biol 199: 3545.
  • Zeng, G., Ye, S., and Larson, T.J. (1996) Repressor for the sn-glycerol 3-phosphate regulon of Escherichia coli K-12: primary structure and identification of the DNA-binding domain. J Bacteriol 178: 70807089.
  • Zhang, Z., and Saier, M.H., Jr (2009) A novel mechanism of transposon-mediated gene activation. PLoS Genet (in press).
  • Zhu, Y., and Lin, E.C. (1988) A mutant crp allele that differentially activates the operons of the fuc regulon in Escherichia coli. J Bacteriol 170: 23522358.