SEARCH

SEARCH BY CITATION

References

  • Alkalaeva, E.Z., Pisarev, A.V., Frolova, L.Y., Kisselev, L.L., and Pestova, T.V. (2006) In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRF1 and eRF3. Cell 125: 11251136.
  • Arrasate, M., Mitra, S., Schweitzer, E.S., Segal, M.R., and Finkbeiner, S. (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431: 805810.
  • Bagriantsev, S., and Liebman, S.W. (2004) Specificity of prion assembly in vivo. [PSI +] and [PIN +] form separate structures in yeast. J Biol Chem 279: 5104251048.
  • Bagriantsev, S.N., Gracheva, E.O., Richmond, J.E., and Liebman, S.W. (2008) Variant-specific [PSI+] infection is transmitted by Sup35 polymers within [PSI+] aggregates with heterogeneous protein composition. Mol Biol Cell 19: 24332443.
  • Bertram, G.H.A., Bell, D.W., Ritchie, G., and Fullerton and Stansfield, I. (2000) Terminating eukaryote translation: domain1 of release factor eRF1 functions in stop codon recognition. RNA 6: 12361247.
  • Bessen, R.A., Kocisko, D.A., Raymond, G.J., Nandan, S., Lansbury, P.T., Jr, and Caughey, B. (1995) Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature 375: 698700.
  • Bradley, M.E., and Liebman, S.W. (2004) The Sup35 domains required for maintenance of weak, strong or undifferentiated yeast [PSI +] prions. Mol Microbiol 51: 16491659.
  • Bradley, M.E., Edskes, H.K., Hong, J.Y., Wickner, R.B., and Liebman, S.W. (2002) Interactions among prions and prion ‘strains’ in yeast. Proc Natl Acad Sci USA 99: 1639216399.
  • Bruce, M. (1996) Strain typing studies of scrapie and BSE. In Methods in Molecular Medicine: Prion Diseases. Baker, H., and Ridley, R.M. (eds). Totowa, NJ: Humana Press, pp. 223236.
  • Caughey, B. (2003) Prion protein conversions: insight into mechanisms, TSE transmission barriers and strains. Br Med Bull 66: 109120.
  • Caughey, B., and Baron, G.S. (2006) Prions and their partners in crime. Nature 443: 803810.
  • Chernoff, Y.O., Derkatch, I.L., and Inge-Vechtomov, S.G. (1993) Multicopy SUP35 gene induces de novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Curr Genet 24: 268270.
  • Chernoff, Y.O., Lindquist, S.L., Ono, B.-I., Inge-Vechtomov, S.G., and Liebman, S.W. (1995) Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor. Science 268: 880884.
  • Cosson, B., Couturier, A., Chabelskaya, S., Kiktev, D., Inge-Vechtomov, S., Philippe, M., and Zhouravleva, G. (2002) Poly (A)-binding protein acts in translation termination via eukaryotic release factor 3 interaction and does not influence [PSI+] propagation. Mol Cell Biol 22: 33013315.
  • Cox, B.S. (1965) [PSI], a cytoplasmic suppressor of super-suppression in yeast. Heredity 20: 505520.
  • Dagkesamanskaya, A.R., and Ter-Avanesyan, M.D. (1991) Interaction of the yeast omnipotent suppressors SUP1 (SUP45) and SUP2 (SUP35) with non-mendelian factors. Genetics 128: 513520.
  • DePace, A.H., Santoso, A., Hillner, P., and Weissman, J.S. (1998) A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93: 12411252.
  • Derkatch, I.L., Chernoff, Y.O., Kushnirov, V.V., Inge-Vechtomov, S.G., and Liebman, S.W. (1996) Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144: 13751386.
  • Derkatch, I.L., Bradley, M.E., Zhou, P., Chernoff, Y.O., and Liebman, S.W. (1997) Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 147: 507519.
  • Derkatch, I.L., Bradley, M.E., and Liebman, S.W. (1998) Overexpression of the SUP45 gene encoding a Sup35p-binding protein inhibits the induction of the de novo appearance of the [PSI +] prion. Proc Natl Acad Sci USA 95: 24002405.
  • Derkatch, I.L., Bradley, M.E., Masse, S.V., Zadorsky, S.P., Polozkov, G.V., Inge-Vechtomov, S.G., and Liebman, S.W. (2000) Dependence and independence of [PSI+] and [PIN+]: a two-prion system in yeast? EMBO J 19: 19421952.
  • Derkatch, I.L., Bradley, M.E., Hong, J.Y., and Liebman, S.W. (2001) Prions affect the appearance of other prions: the story of [PIN+]. Cell 106: 171182.
  • Derkatch, I.L., Uptain, S.M., Outeiro, T.F., Krishnan, R., Lindquist, S.L., and Liebman, S.W. (2004) Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro. Proc Natl Acad Sci USA 101: 1293412939.
  • Douglas, P.M., Treusch, S., Ren, H.Y., Halfmann, R., Duennwald, M.L., Lindquist, S., and Cyr, D.M. (2008) Chaperone-dependent amyloid assembly protects cells from prion toxicity. Proc Natl Acad Sci USA 105: 72067211.
  • Frolova, L.X., Le Goff, G., Zhouravleva, E., Davydova, M., and Philippe, Kisselev, L. (1996) Eukaryotic polypeptide chain release factor eRF3 is an eRF1- and ribosome-dependent guanosine triphosphatase. RNA 2: 334341.
  • Ganusova, E.E., Ozolins, L.N., Bhagat, S., Newnam, G.P., Wegrzyn, R.D., Sherman, M.Y., and Chernoff, Y.O. (2006) Modulation of prion formation, aggregation, and toxicity by the actin cytoskeleton in yeast. Mol Cell Biol 2: 617629.
  • Gavin, A.C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415: 141147.
  • Gil, M.J., and Rego, A.C. (2008) Mechanisms of neurodegeneration in Huntington's disease. Eur J Neurosci 27: 28032820.
  • Gross, T., Siepmann, A., Sturm, D., Windgassen, M., Scarcelli, J.J., Seedorf, M., Cole, C.N., and Krebber, H. (2007) The DEAD-box RNA helicase Dbp5 functions in translation termination. Science 315: 646649.
  • Haass, C., and Selkoe, D.J. (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol 8: 101112.
  • Jiang, H., Poirier, M.A., Liang, Y., Pei, Z., Weiskittel, C.E., Smith, W.W., et al. (2006) Depletion of CBP is directly linked with cellular toxicity caused by mutant huntingtin. Neurobiol Dis 23: 543551.
  • Keeling, K.M., Salas-Marco, J., Osherovich, L.Z., and Bedwell, D.M. (2006) Tpa1p is part of an mRNP complex that influences translation termination, mRNA deadenylation, and mRNA turnover in Saccharomyces cerevisiae. Mol Cell Biol 26: 52375248.
  • King, C.Y., and Diaz-Avalos, R. (2004) Protein-only transmission of three yeast prion strains. Nature 428: 319323.
  • Krishnan, R., and Lindquist, S.L. (2005) Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 435: 765772.
  • Liu, J.J., Sondheimer, N., and Lindquist, S.L. (2002) Changes in the middle region of Sup35 profoundly alter the nature of epigenetic inheritance for the yeast prion [PSI+]. Proc Natl Acad Sci USA 99: 1644616453.
  • Nucifora, F.C., Jr, Sasaki, M., Peters, M.F., Huang, H., Cooper, J.K., Yamada, M., et al. (2001) Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291: 24232428.
  • Nussbaum, R.L., and Ellis, C.E. (2003) Alzheimer's disease and Parkinson's disease. N Engl J Med 348: 13561364.
  • Osherovich, L.Z., Cox, B.S., Tuite, M.F., and Weissman, J.S. (2004) Dissection and design of yeast prions. Plos Biol 2: 442451.
  • Pan, K.M., Baldwin, M., Nguyen, J., Gasset, M., Serban, A., and Groth, D. (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA 90: 1096210966.
  • Patino, M.M., Liu, J.J., Glover, J.R., and Lindquist, S. (1996) Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273: 622626.
  • Paushkin, S.V., Kushnirov, V.V., Smirnov, V.N., and Ter-Avanesyan, M.D. (1996) Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J 15: 31273134.
  • Paushkin, S.V., Kushnirov, V.V., Smirnov, V.N., and Ter-Avanesyan, M.D. (1997) Interaction between yeast Sup45p (eRF1) and Sup35p (eRF3) polypeptide chain release factors: implications for prion-dependent regulation. Mol Cell Biol 17: 27982805.
  • Prusiner, S.B. (1982) Novel proteinaceous infectious particles cause scrapie. Science 216: 136144.
  • Prusiner, S.B. (1998) Prions. Proc Natl Acad Sci USA 95: 1336313383.
  • Prusiner, S.B., Scott, M.R., DeArmond, S.J., and Cohen, F.E. (1998) Prion protein biology. Cell 93: 337348.
  • Ross, C.A., and Poirier, M.A. (2004) Protein aggregation and neurodegenerative disease. Nat Med 10: S10S17.
  • Ross, E.D., Minton, A., and Wickner, R.B. (2005) Prion domains: sequences, structures and interactions. Nat Cell Biol 7: 10391044.
  • Salas-Marco, J., and Bedwell, D.M. (2004) GTP hydrolysis by eRF3 facilitates stop codon decoding during eukaryotic translation termination. Mol Cell Biol 24: 77697778.
  • Sanders, S.L., Jennings, J., Canutescu, A., Link, A.J., and Weil, P.A. (2002) Proteomics of the eukaryotic transcription machinery: identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Mol Cell Biol 22: 47234738.
  • Satpute-Krishnan, P., and Serio, T.R. (2005) Prion protein remodelling confers an immediate phenotypic switch. Nature 437: 262265.
  • Satpute-Krishnan, P., Langseth, S.X., and Serio, T.R. (2007) Hsp104-dependent remodeling of prion complexes mediates protein-only inheritance. PLoS Biol 5: e24.
  • Schlumpberger, M., Prusiner, S.B., and Herskowitz, I. (2001) Induction of distinct [URE3] yeast prion strains. Mol Cel Biol 20: 70357046.
  • Sherman, F., Fink, G.R., and Hicks, J.B. (1986) Methods in Yeast Genetics. Plainview, NY: Cold Spring Harbor Laboratory.
  • Sikorski, R.S., and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 1927.
  • Sondheimer, N., and Lindquist, S.L. (2000) Rnq1: an epigenetic modifier of protein function in yeast. Mol Cell 5: 163172.
  • Song, H., Mugnier, P., Das, A.K., Webb, H.M., and Evans, D.R. (2000) The crystal structure of human eukaryotic release factor eRF1: mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 100: 311321.
  • Stansfield, I., Jones, K.M., Kushnirov, V.V., Dagkesamanskaya, A.R., and Poznyakovski, A.I. (1995) The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J 14: 43654373.
  • Tanaka, M., Chien, P., Naber, N., Cooke, R., and Weissman, J.S. (2004) Conformational variations in an infectious protein determine prion strain differences. Nature 428: 323328.
  • Tank, E.M., and True, H.L. (2009) Disease-associated mutant ubiquitin causes proteasomal impairment and enhances the toxicity of protein aggregates. PLoS Genet 5: e1000382.
  • Taylor, J.P., Hardy, J., and Fischbeck, K.H. (2002) Toxic proteins in neurodegenerative disease. Science 296: 19911995.
  • Ter-Avanesyan, M.D., Kushnirov, V.V., Dagkesamanskaya, A.R., Didichenko, S.A., Chernoff, Y.O., Inge-Vechtomov, S.G., and Smirnov, V.N. (1993) Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol Microbiol 7: 683692.
  • Ter-Avanesyan, M.D., Dagkesamanskaya, A.R., Kushnirov, V.V., and Smirnov, V.N. (1994) The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics 137: 671676.
  • Toyama, B.H., Kelly, M.J., Gross, J.D., and Weissman, J.S. (2007) The structural basis of yeast prion strain variants. Nature 449: 233237.
  • Uptain, S.M., Sawicki, G.J., Caughey, B., and Lindquist, S.L. (2001) Strains of [PSI+] are distinguished by their efficiencies of prion-mediated conformational conversion. EMBO J 20: 62366245.
  • Valouev, I.A., Urakov, V.N., Kochneva-Pervukhova, N.V., Smirnov, V.N., and Ter-Avanesyan, M.D. (2004) Translation termination factors function outside of translation: yeast eRF1 interacts with myosin light chain, Mlc1p, to effect cytokinesis. Mol Microbiol 53: 687696.
  • Wickner, R.B. (1994) [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264: 566569.
  • Wickner, R.B., Liebman, S.W., and Saupe, S.J. (2004) Prions of yeast and filamentous fungi: [URE3], [PSI+], [PIN+], and [Het-s]. In Prion Biology and Diseases. Prusiner, S.B. (ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp. 305372.
  • Zhou, P., Derkatch, I.L., Uptain, S.M., Patino, M.M., Lindquist, S., and Liebman, S.W. (1999) The yeast non-Mendelian factor [ETA+] is a variant of [PSI+], a prion-like form of release factor eRF3. EMBO J 18: 11821191.
  • Zhou, P., Derkatch, I.L., and Liebman, S.W. (2001) The relationship between visible intracellular aggregates that appear after overexpression of Sup35 and the yeast prion-like elements [PSI+] and [PIN+]. Mol Microbiol 39: 3746.