SEARCH

SEARCH BY CITATION

References

  • Afshar, S., Kim, C., Monbouquette, H.G., and Schröder, I.I. (1998) Effect of tungstate on nitrate reduction by the hyperthermophilic archaeon Pyrobaculum aerophilum. Appl Environ Microbiol 64: 30043008.
  • Almendra, M.J., Brondino, C.D., Gavel, O., Pereira, A.S., Tavares, P., Bursakov, S., et al. (1999) Purification and characterization of a tungsten-containing formate dehydrogenase from Desulfovibrio gigas. Biochemistry 38: 1636616372.
  • Altekruse, S.F., Stern, N.J., Fields, P.I., and Swerdlow, D.L. (1999) Campylobacter jejuni – an emerging foodborne pathogen. Emerg Infect Dis 5: 2835.
  • Anderson, L.A., Palmer, T., Price, N.C., Bornemann, S., Boxer, D.H., and Pau, R.N. (1997) Characterisation of the molybdenum-responsive ModE regulatory protein and its binding to the promoter region of the modABCD (molybdenum transport) operon of Escherichia coli. Eur J Biochem 246: 119126.
  • Andreesen, J.R., and Ljungdahl, L.G. (1973) Formate dehydrogenase of Clostridium thermoaceticum: incorporation of selenium-75, and the effects of selenite, molybdate, and tungstate on the enzyme. J Bacteriol 116: 867873.
  • Bevers, L.E., Hagedoorn, P.L., Krijger, G.C., and Hagen, W.R. (2006) Tungsten transport protein A (WtpA) in Pyrococcus furiosus: the first member of a new class of tungstate and molybdate transporters. J Bacteriol 188: 64986505.
  • Bilous, P.T., and Weiner, J.H. (1985) Dimethyl sulfoxide reductase activity by anaerobically grown Escherichia coli HB101. J Bacteriol 162: 11511155.
  • Brondino, C.D., Passeggi, M.C., Caldeira, J., Almendra, M.J., Feio, M.J., Moura, J.J., and Moura, I. (2004) Incorporation of either molybdenum or tungsten into formate dehydrogenase from Desulfovibrio alaskensis NCIMB 13491; EPR assignment of the proximal iron-sulfur cluster to the pterin cofactor in formate dehydrogenases from sulfate-reducing bacteria. J Biol Inorg Chem 9: 145151.
  • Buc, J., Santini, C.L., Giordani, R., Czjzek, M., Wu, L.F., and Giordano, G. (1999) Enzymatic and physiological properties of the tungsten-substituted molybdenum TMAO reductase from Escherichia coli. Mol Microbiol 32: 159168.
  • Burke, K.A., Calder, K., and Lascelles, J. (1980) Effects of molybdenum and tungsten on induction of nitrate reductase and formate dehydrogenase in wild type and mutant Paracoccus denitrificans. Arch Microbiol 126: 155159.
  • Ciccone, D.N., Morshead, K.B., and Oettinger, M.A. (2004) Chromatin immunoprecipitation in the analysis of large chromatin domains across murine antigen receptor loci. Methods Enzymol 376: 334348.
  • Combet, C., Blanchet, C., Geourjon, C., and Deleage, G. (2000) NPS@: network protein sequence analysis. Trends Biochem Sci 25: 147150.
  • Elliott, B.B., and Mortenson, L.E. (1976) Regulation of molybdate transport by Clostridium pasteurianum. J Bacteriol 127: 770779.
  • Fried, M., and Crothers, D.M. (1981) Equilibria and kinetics of lac repressor–operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res 9: 65056525.
  • Friedman, C.R., Neimann, J., Wegener, H.C., and Tauxe, R.V. (2000) Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations. In Campylobacter. Blaser, I.N.a.M.J. (ed.). Washington, DC: American Society for Microbiology Press, pp. 121138.
  • Gírio, F.M., Amaral-Collago, M.T., and Attwood, M.M. (1994) The effect of molybdate and tungstate ions on the metabolic rates and enzyme activities in methanol-grown Methylobacterium sp. RXM. Appl Microbiol Biotechnol 40: 898903.
  • Grunden, A.M. (1996) Regulation of an operon coding for the components of the molybdate-transport system (modABCD) by ModE protein, a molybdate-dependent repressor in Escherichia coli. PhD Thesis, University of Florida, Gainesville, FL.
  • Grunden, A.M., Ray, R.M., Rosentel, J.K., Healy, F.G., and Shanmugam, K.T. (1996) Repression of the Escherichia coli modABCD (molybdate transport) operon by ModE. J Bacteriol 178: 735744.
  • Grunden, A.M., Self, W.T., Villain, M., Blalock, J.E., and Shanmugam, K.T. (1999) An analysis of the binding of repressor protein ModE to modABCD (molybdate transport) operator/promoter DNA of Escherichia coli. J Biol Chem 274: 2430824315.
  • Hagedoorn, P.L., Hagen, W.R., Stewart, L.J., Docrat, A., Bailey, S., and Garner, C.D. (2003) Redox characteristics of the tungsten DMSO reductase of Rhodobacter capsulatus. FEBS Lett 555: 606610.
  • Hall, D.R., Gourley, D.G., Leonard, G.A., Duke, E.M., Anderson, L.A., Boxer, D.H., and Hunter, W.N. (1999) The high-resolution crystal structure of the molybdate-dependent transcriptional regulator (ModE) from Escherichia coli: a novel combination of domain folds. EMBO J 18: 14351446.
  • Hille, R. (2002) Molybdenum and tungsten in biology. Trends Biochem Sci 27: 360367.
  • Hoffman, P.S., and Goodman, T.G. (1982) Respiratory physiology and energy conservation efficiency of Campylobacter jejuni. J Bacteriol 150: 319326.
  • Hollenstein, K., Frei, D.C., and Locher, K.P. (2007) Structure of an ABC transporter in complex with its binding protein. Nature 446: 213216.
  • Johann, S., and Hinton, S.M. (1987) Cloning and nucleotide sequence of the chlD locus. J Bacteriol 169: 19111916.
  • Johnson, J.L., and Rajagopalan, K.V. (1976) Purification and properties of sulfite oxidase from human liver. J Clin Invest 58: 543550.
  • Johnson, J.L., Rajagopalan, K.V., and Cohen, H.J. (1974) Molecular basis of the biological function of molybdenum. Effect of tungsten on xanthine oxidase and sulfite oxidase in the rat. J Biol Chem 249: 859866.
  • Kletzin, A., and Adams, M.W. (1996) Tungsten in biological systems. FEMS Microbiol Rev 18: 563.
  • Kutsche, M., Leimkühler, S., Angermüller, S., and Klipp, W. (1996) Promoters controlling expression of the alternative nitrogenase and the molybdenum uptake system in Rhodobacter capsulatus are activated by NtrC, independent of sigma54, and repressed by molybdenum. J Bacteriol 178: 20102017.
  • Luckarift, H.R., Dalton, H., Sharma, N.D., Boyd, D.R., and Holt, R.A. (2004) Isolation and characterisation of bacterial strains containing enantioselective DMSO reductase activity: application to the kinetic resolution of racemic sulfoxides. Appl Microbiol Biotechnol 65: 678685.
  • McGee, D.J., Radcliff, F.J., Mendz, G.L., Ferrero, R.L., and Mobley, H.L. (1999) Helicobacter pylori rocF is required for arginase activity and acid protection in vitro but is not essential for colonization of mice or for urease activity. J Bacteriol 181: 73147322.
  • MacGregor, C.H., Schnaitman, C.A., and Normansell, D.E. (1974) Purification and properties of nitrate reductase from Escherichia coli K12. J Biol Chem 249: 53215327.
  • McNicholas, P.M., Rech, S.A., and Gunsalus, R.P. (1997) Characterization of the ModE DNA-binding sites in the control regions of modABCD and moaABCDE of Escherichia coli. Mol Microbiol 23: 515524.
  • Makdessi, K., Andreesen, J.R., and Pich, A. (2001) Tungstate Uptake by a highly specific ABC transporter in Eubacterium acidaminophilum. J Biol Chem 276: 2455724564.
  • Maupin-Furlow, J.A., Rosentel, J.K., Lee, J.H., Deppenmeier, U., Gunsalus, R.P., and Shanmugam, K.T. (1995) Genetic analysis of the modABCD (molybdate transport) operon of Escherichia coli. J Bacteriol 177: 48514856.
  • May, H.D., Patel, P.S., and Ferry, J.G. (1988) Effect of molybdenum and tungsten on synthesis and composition of formate dehydrogenase in Methanobacterium formicicum. J Bacteriol 170: 33843389.
  • Miller, J.H. (1972) Assay of β-galactosidase. In Experiments in Molecular Genetics. Miller, J.H. (ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, pp. 352355.
  • Mouncey, N.J., Mitchenall, L.A., and Pau, R.N. (1995) Mutational analysis of genes of the mod locus involved in molybdenum transport, homeostasis, and processing in Azotobacter vinelandii. J Bacteriol 177: 52945302.
  • Mouncey, N.J., Mitchenall, L.A., and Pau, R.N. (1996) The modE gene product mediates molybdenum-dependent expression of genes for the high-affinity molybdate transporter and modG in Azotobacter vinelandii. Microbiology 142 (Part 8): 19972004.
  • Mukund, S., and Adams, M.W. (1991) The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase. Evidence for its participation in a unique glycolytic pathway. J Biol Chem 266: 1420814216.
  • Mukund, S., and Adams, M.W. (1996) Molybdenum and vanadium do not replace tungsten in the catalytically active forms of the three tungstoenzymes in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 178: 163167.
  • Müller, J.A., and DasSarma, S. (2005) Genomic analysis of anaerobic respiration in the archaeon Halobacterium sp. strain NRC-1: dimethyl sulfoxide and trimethylamine N-oxide as terminal electron acceptors. J Bacteriol 187: 16591667.
  • Myers, J.D., and Kelly, D.J. (2005) A sulphite respiration system in the chemoheterotrophic human pathogen Campylobacter jejuni. Microbiology 151: 233242.
  • Nicholas, D.J.D., and Nason, A. (1957) Determination of nitrate and nitrite. Methods Enzymol 3: 981984.
  • Olson, J.W., and Maier, R.J. (2002) Molecular hydrogen as an energy source for Helicobacter pylori. Science 298: 17881790.
  • Pabo, C.O., and Sauer, R.T. (1992) Transcription factors: structural families and principles of DNA recognition. Annu Rev Biochem 61: 10531095.
  • Parkhill, J., Wren, B.W., Mungall, K., Ketley, J.M., Churcher, C., Basham, D., et al. (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403: 665668.
  • Rajagopalan, K.V., and Johnson, J.L. (1992) The pterin molybdenum cofactors. J Biol Chem 267: 1019910202.
  • Rech, S., Deppenmeier, U., and Gunsalus, R.P. (1995) Regulation of the molybdate transport operon, modABCD, of Escherichia coli in response to molybdate availability. J Bacteriol 177: 10231029.
  • Rech, S., Wolin, C., and Gunsalus, R.P. (1996) Properties of the periplasmic ModA molybdate-binding protein of Escherichia coli. J Biol Chem 271: 25572562.
  • Rothery, R.A., Grant, J.L., Johnson, J.L., Rajagopalan, K.V., and Weiner, J.H. (1995) Association of molybdopterin guanine dinucleotide with Escherichia coli dimethyl sulfoxide reductase: effect of tungstate and a mob mutation. J Bacteriol 177: 20572063.
  • Schmitz, R.A., Richter, M., Linder, D., and Thauer, R.K. (1992) A tungsten-containing active formylmethanofuran dehydrogenase in the thermophilic archaeon Methanobacterium wolfei. Eur J Biochem 207: 559565.
  • Schwarz, G. (2005) Molybdenum cofactor biosynthesis and deficiency. Cell Mol Life Sci 62: 27922810.
  • Schwarz, G., Hagedoorn, P.L., and Fischer, K. (2007) Molybdate and tungstate: uptake, homeostasis, cofactors, and enzymes. In Molecular Microbiology of Heavy Metals, Vol. III. Nies, D.H., and Simon, S. (eds). Berlin: Springer, pp. 215229.
  • Scott, R.H., and DeMoss, J.A. (1976) Formation of the formate-nitrate electron transport pathway from inactive components in Escherichia coli. J Bacteriol 126: 478486.
  • Self, W.T., Grunden, A.M., Hasona, A., and Shanmugam, K.T. (2001) Molybdate transport. Res Microbiol 152: 311321.
  • Sellars, M.J., Hall, S.J., and Kelly, D.J. (2002) Growth of Campylobacter jejuni supported by respiration of fumarate, nitrate, nitrite, trimethylamine-N-oxide, or dimethyl sulfoxide requires oxygen. J Bacteriol 184: 41874196.
  • Sikes, M.L., Bradshaw, J.M., Ivory, W.T., Lunsford, J.L., McMillan, R.E., and Morrison, C.R. (2009) A streamlined method for rapid and sensitive chromatin immunoprecipitation. J Immunol Methods 344: 5863.
  • Southerland, W.M., and Toghrol, F. (1983) Sulfite oxidase activity in Thiobacillus novellus. J Bacteriol 156: 941944.
  • Studholme, D.J., and Pau, R.N. (2003) A DNA element recognised by the molybdenum-responsive transcription factor ModE is conserved in Proteobacteria, green sulphur bacteria and Archaea. BMC Microbiol 3: 24.
  • Wang, G., Angermüller, S., and Klipp, W. (1993) Characterization of Rhodobacter capsulatus genes encoding a molybdenum transport system and putative molybdenum-pterin-binding proteins. J Bacteriol 175: 30313042.
  • Wang, Y., and Taylor, D.E. (1990) Chloramphenicol resistance in Campylobacter coli: nucleotide sequence, expression, and cloning vector construction. Gene 94: 2328.
  • Weerakoon, D.R., and Olson, J.W. (2008) The Campylobacter jejuni NADH: ubiquinone oxidoreductase (complex I) utilizes flavodoxin rather than NADH. J Bacteriol 190: 915925.
  • Weerakoon, D.R., Borden, N.J., Goodson, C.M., Grimes, J., and Olson, J.W. (2009) The role of respiratory donor enzymes in Campylobacter jejuni host colonization and physiology. Microb Pathog 47: 815.
  • Weingarten, R.A., Grimes, J.L., and Olson, J.W. (2008) Role of Campylobacter jejuni respiratory oxidases and reductases in host colonization. Appl Environ Microbiol 74: 13671375.
  • White, H., Strobl, G., Feicht, R., and Simon, H. (1989) Carboxylic acid reductase: a new tungsten enzyme catalyses the reduction of non-activated carboxylic acids to aldehydes. Eur J Biochem 184: 8996.
  • Yao, R., Alm, R.A., Trust, T.J., and Guerry, P. (1993) Construction of new Campylobacter cloning vectors and a new mutational cat cassette. Gene 130: 127130.
  • Zhang, Y., and Gladyshev, V.N. (2008) Molybdoproteomes and evolution of molybdenum utilization. J Mol Biol 379: 881899.