SEARCH

SEARCH BY CITATION

References

  • Ames, G.F., Liu, C.E., Joshi, A.K., and Nikaido, K. (1996) Liganded and unliganded receptors interact with equal affinity with the membrane complex of periplasmic permeases, a subfamily of traffic ATPases. J Biol Chem 271: 1426414270.
  • Anthoni, U., Christophersen, C., Hougaard, L., and Nielsen, P.H. (1991) Quaternary ammonium compounds in the biosphere – an example of versatile adaptive strategy. Comp Biochem Physiol 99B: 118.
  • Aurich, H., and Kleber, H.P. (1970) Kinetics of active carnitine transport in Pseudomonas aeruginosa. Acta Biol Med Ger 24: 559568.
  • Axtell, C.A., and Beattie, G.A. (2002) Construction and characterization of a proU–gfp transcriptional fusion that measures water availability in a microbial habitat. Appl Environ Microbiol 68: 46044612.
  • Biemans-Oldehinkel, E., and Poolman, B. (2003) On the role of the two extracytoplasmic substrate-binding domains in the ABC transporter OpuA. EMBO J 22: 59835993.
  • Biemans-Oldehinkel, E., Doeven, M.K., and Poolman, B. (2006) ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett 580: 10231035.
  • Bohl, E., Shuman, H.A., and Boos, W. (1995) Mathematical treatment of the kinetics of binding protein dependent transport systems reveals that both the substrate loaded and unloaded binding proteins interact with the membrane components. J Theor Biol 172: 8394.
  • Bourdin, B., Adenier, H., and Perrin, Y. (2007) Carnitine is associated with fatty acid metabolism in plants. Plant Physiol Biochem 45: 926931.
  • Braun, V., and Herrmann, C. (2007) Docking of the periplasmic FecB binding protein to the FecCD transmembrane proteins in the ferric citrate transport system of Escherichia coli. J Bacteriol 189: 69136918.
  • Buchet, A., Eichler, K., and Mandrand-Berthelot, M.A. (1998) Regulation of the carnitine pathway in Escherichia coli: investigation of the cai-fix divergent promoter region. J Bacteriol 180: 25992608.
  • Chen, C., and Beattie, G.A. (2007) Characterization of the osmoprotectant transporter OpuC from Pseudomonas syringae and demonstration that cystathionine-β-synthase domains are required for its osmoregulatory function. J Bacteriol 189: 69016912.
  • Chen, C., and Beattie, G.A. (2008) Pseudomonas syringae BetT is a low-affinity choline transporter that is responsible for superior osmoprotection by choline over glycine betaine. J Bacteriol 190: 27172725.
  • Cosquer, A., Pichereau, V., Pocard, J.A., Minet, J., Cormier, M., and Bernard, T. (1999a) Nanomolar levels of dimethylsulfoniopropionate, dimethylsulfonioacetate, and glycine betaine are sufficient to confer osmoprotection to Escherichia coli. Appl Environ Microbiol 65: 33043311.
  • Cosquer, A., Pichereau, V., Le Mee, D., Le Roch, M., Renault, J., Carboni, B., et al. (1999b) Toxicity and osmoprotective activities of analogues of glycine betaine obtained by solid phase organic synthesis towards Sinorhizobium meliloti. Bioorg Med Chem Lett 9: 4954.
  • Daus, M.L., Grote, M., and Schneider, E. (2009) The MalF P2 loop of the ATP-binding cassette transporter MalFGK2 from Escherichia coli and Salmonella enterica serovar typhimurium interacts with maltose binding protein (MalE) throughout the catalytic cycle. J Bacteriol 191: 754761.
  • Davidson, A.L., Dassa, E., Orelle, C., and Chen, J. (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72: 317364.
  • Diab, F., Bernard, T., Bazire, A., Haras, D., Blanco, C., and Jebbar, M. (2006) Succinate-mediated catabolite repression control on the production of glycine betaine catabolic enzymes in Pseudomonas aeruginosa PAO1 under low and elevated salinities. Microbiology 152: 13951406.
  • Dupont, L., Garcia, I., Poggi, M.C., Alloing, G., Mandon, K., and Le Rudulier, D. (2004) The Sinorhizobium meliloti ABC transporter Cho is highly specific for choline and expressed in bacteroids from Medicago sativa nodules. J Bacteriol 186: 59885996.
  • Feil, H., Feil, W.S., Chain, P., Larimer, F., DiBartolo, G., Copeland, A., et al. (2005) Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc Natl Acad Sci USA 102: 1106411069.
  • Fox, M.A., Karunakaran, R., Leonard, M.E., Mouhsine, B., Williams, A., East, A.K., et al. (2008) Characterization of the quaternary amine transporters of Rhizobium leguminosarum bv. viciae 3841. FEMS Microbiol Lett 287: 212220.
  • Galvao, T.C., De Lorenzo, V., and Canovas, D. (2006) Uncoupling of choline-O-sulphate utilization from osmoprotection in Pseudomonas putida. Mol Microbiol 62: 16431654.
  • Grote, M., Polyhach, Y., Jeschke, G., Steinhoff, H.J., Schneider, E., and Bordignon, E. (2009) Transmembrane signaling in the maltose ABC transporter MalFGK2-E: periplasmic MalF-P2 loop communicates substrate availability to the ATP-bound MalK dimer. J Biol Chem 284: 1752117526.
  • Halverson, L.J., and Firestone, M.K. (2000) Differential effects of permeating and nonpermeating solutes on the fatty acid composition of Pseudomonas putida. Appl Environ Microbiol 66: 24142421.
  • Heeb, S., Itoh, Y., Nishijyo, T., Schnider, U., Keel, C., Wade, J., et al. (2000) Small, stable shuttle vectors based on the minimal pVS1 replicon for use in gram-negative, plant-associated bacteria. Mol Plant Microbe Interact 13: 232237.
  • Van Der Heide, T., and Poolman, B. (2002) ABC transporters: one, two or four extracytoplasmic substrate-binding sites? EMBO Rep 3: 938943.
  • Higgins, C.F., and Ames, G.F. (1981) Two periplasmic transport proteins which interact with a common membrane receptor show extensive homology: complete nucleotide sequences. Proc Natl Acad Sci USA 78: 60386042.
  • Hirano, S.S., Ostertag, E.M., Savage, S.A., Baker, L.S., Willis, D.K., and Upper, C.D. (1997) Contribution of the regulatory gene lemA to field fitness of Pseudomonas syringae pv. syringae. Appl Environ Microbiol 63: 43044312.
  • Hoang, T.T., Karkhoff-Schweizer, R.R., Kutchma, A.J., and Schweizer, H.P. (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212: 7786.
  • Horn, C., Sohn-Bosser, L., Breed, J., Welte, W., Schmitt, L., and Bremer, E. (2006) Molecular determinants for substrate specificity of the ligand-binding protein OpuAC from Bacillus subtilis for the compatible solutes glycine betaine and proline betaine. J Mol Biol 357: 592606.
  • Jensen, L.J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., et al. (2009) STRING 8 – a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37: D412D416.
  • Jung, H., Buchholz, M., Clausen, J., Nietschke, M., Revermann, A., Schmid, R., and Jung, K. (2002) CaiT of Escherichia coli, a new transporter catalyzing l-carnitine/gamma-butyrobetaine exchange. J Biol Chem 277: 3925139258.
  • Kempf, B., and Bremer, E. (1995) OpuA, an osmotically regulated binding protein-dependent transport system for the osmoprotectant glycine betaine in Bacillus subtilis. J Biol Chem 270: 1670116713.
  • King, E.O., Ward, M.K., and Raney, D.E. (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44: 301307.
  • Kitten, T., and Willis, D.K. (1996) Suppression of a sensor kinase-dependent phenotype in Pseudomonas syringae by ribosomal proteins L35 and L20. J Bacteriol 178: 15481555.
  • Kleber, H.P., and Aurich, H. (1966) Inhibition of enzyme induction for oxidation of quaternary compounds by chloramphenicol in Pseudomonas aeruginosa. Naturwissenschaften 53: 234.
  • Kleber, H.P., and Aurich, H. (1967) Evidence for an inducible active transport of carnitine in Pseudomonas aeruginosa. Biochem Biophys Res Commun 26: 255260.
  • Lanfermeijer, F.C., Picon, A., Konings, W.N., and Poolman, B. (1999) Kinetics and consequences of binding of nona- and dodecapeptides to the oligopeptide binding protein (OppA) of Lactococcus lactis. Biochemistry 38: 1444014450.
  • Langsrud, S., Sundheim, G., and Borgmann-Strahsen, R. (2003) Intrinsic and acquired resistance to quaternary ammonium compounds in food-related Pseudomonas spp. J Appl Microbiol 95: 874882.
  • Liberati, N.T., Urbach, J.M., Miyata, S., Lee, D.G., Drenkard, E., Wu, G., et al. (2006) An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci USA 103: 28332838.
  • Loper, J.E., and Lindow, S.E. (1987) Lack of evidence for in situ fluorescent pigment production by Pseudomonas syringae pv. syringae on bean leaf surfaces. Phytopathology 77: 14491454.
  • May, G., Faatz, E., Villarejo, M., and Bremer, E. (1986) Binding protein dependent transport of glycine betaine and its osmotic regulation in Escherichia coli K12. Mol Gen Genet 205: 225233.
  • Miller, D.M., 3rd, Olson, J.S., Pflugrath, J.W., and Quiocho, F.A. (1983) Rates of ligand binding to periplasmic proteins involved in bacterial transport and chemotaxis. J Biol Chem 258: 1366513672.
  • Moore, R.A., Starratt, A.N., Ma, S.-W., Morris, V.L., and Cuppels, D.A. (1989) Identification of a chromosomal region required for biosynthesis of the phytotoxin coronatine by Pseudomonas syringae pv. tomato. Can J Microbiol 35: 910917.
  • Orelle, C., Ayvaz, T., Everly, R.M., Klug, C.S., and Davidson, A.L. (2008) Both maltose-binding protein and ATP are required for nucleotide-binding domain closure in the intact maltose ABC transporter. Proc Natl Acad Sci USA 105: 1283712842.
  • Oswald, C., Smits, S.H., Hoing, M., Sohn-Bosser, L., Dupont, L., Le Rudulier, D., et al. (2008) Crystal structures of the choline/acetylcholine substrate-binding protein ChoX from Sinorhizobium meliloti in the liganded and unliganded-closed states. J Biol Chem 283: 3284832859.
  • Picon, A., Kunji, E.R., Lanfermeijer, F.C., Konings, W.N., and Poolman, B. (2000) Specificity mutants of the binding protein of the oligopeptide transport system of Lactococcus lactis. J Bacteriol 182: 16001608.
  • Quiocho, F.A. (1996) Atomic basis of the exquisite specificity of phosphate and sulfate transport receptors. Kidney Int 49: 943946.
  • Rahme, L.G., Stevens, E.J., Wolfort, S.F., Shao, J., Tompkins, R.G., and Ausubel, F.M. (1995) Common virulence factors for bacterial pathogenicity in plants and animals. Science 268: 18991902.
  • Rees, D.C., Johnson, E., and Lewinson, O. (2009) ABC transporters: the power to change. Nat Rev 10: 218227.
  • De Rudder, K.E., Lopez-Lara, I.M., and Geiger, O. (2000) Inactivation of the gene for phospholipid N-methyltransferase in Sinorhizobium meliloti: phosphatidylcholine is required for normal growth. Mol Microbiol 37: 763772.
  • Sage, A.E., and Vasil, M.L. (1997) Osmoprotectant-dependent expression of plcH, encoding the hemolytic phospholipase C, is subject to novel catabolite repression control in Pseudomonas aeruginosa PAO1. J Bacteriol 179: 48744881.
  • Salvano, M.A., Lisa, T.A., and Domenech, C.E. (1989) Choline transport in Pseudomonas aeruginosa. Mol Cell Biochem 85: 8189.
  • Silhavy, T.J., Berman, M.L., and Enquist, L.W. (1984) Experiments with Gene Fusions. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  • Smits, S.H., Hoing, M., Lecher, J., Jebbar, M., Schmitt, L., and Bremer, E. (2008) The compatible-solute-binding protein OpuAC from Bacillus subtilis: ligand binding, site-directed mutagenesis, and crystallographic studies. J Bacteriol 190: 56635671.
  • Wang, X.G., Kidder, J.M., Scagliotti, J.P., Klempner, M.S., Noring, R., and Hu, L.T. (2004) Analysis of differences in the functional properties of the substrate binding proteins of the Borrelia burgdorferi oligopeptide permease (Opp) operon. J Bacteriol 186: 5160.
  • Wargo, M.J., and Hogan, D.A. (2009) Identification of genes required for Pseudomonas aeruginosa carnitine catabolism. Microbiology 155: 24112419.
  • Wargo, M.J., Szwergold, B.S., and Hogan, D.A. (2008) Identification of two gene clusters and a transcriptional regulator required for Pseudomonas aeruginosa glycine betaine catabolism. J Bacteriol 190: 26902699.
  • Windgassen, M., Urban, A., and Jaeger, K.-E. (2000) Rapid gene inactivation in Pseudomonas aeruginosa. FEMS Microbiol Lett 193: 201205.
  • Wolf, A., Lee, K.C., Kirsch, J.F., and Ames, G.F. (1996) Ligand-dependent conformational plasticity of the periplasmic histidine-binding protein HisJ. Involvement in transport specificity. J Biol Chem 271: 2124321250.
  • Wood, J.M., Bremer, E., Csonka, L.N., Kraemer, R., Poolman, B., Van Der Heide, T., and Smith, L.T. (2001) Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp Biochem Physiol A Mol Integr Physiol 130: 437460.