SEARCH

SEARCH BY CITATION

References

  • Bohnert, J.A., and Kern, W.V. (2005) Selected arylpiperazines are capable of reversing multidrug resistance in Escherichia coli overexpressing RND efflux pumps. Antimicrob Agents Chemother 49: 849852.
  • Bohnert, J.A., Schuster, S., Fähnrich, E., Trittler, R., and Kern, W.V. (2007) Altered spectrum of multidrug resistance associated with a single point mutation in the Escherichia coli RND-type MDR efflux pump YhiV (MdtF). J Antimicrob Chemother 59: 12161222.
  • Bohnert, J.A., Schuster, S., Seeger, M.A., Fähnrich, E., Pos, K.M., and Kern, W.V. (2008) Site-directed mutagenesis reveals putative substrate binding residues in the Escherichia coli RND efflux pump AcrB. J Bacteriol 190: 82258229.
  • Bohnert, J.A., Karamian, B., and Nikaido, H. (2010) Optimized Nile Red efflux assay of AcrAB–TolC multidrug efflux system shows competition between substrates. Antimicrob Agents Chemother doi:10.118/AAC.00620-10.
  • Dastidar, V., Mao, W., Lomovskaya, O., and Zgurskaya, H.I. (2007) Drug-induced conformational changes in multidrug efflux transporter AcrB from Haemophilus influenzae. J Bacteriol 189: 55505558.
  • Dinh, T., Paulsen, I.T., and Saier, M.H., Jr (1994) A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of gram-negative bacteria. J Bacteriol 176: 38253831.
  • Drew, D., Klepsch, M.M., Newstead, S., Flaig, R., De Gier, J.W., Iwata, S., and Beis, K. (2008) The structure of the efflux pump AcrB in complex with bile acid. Mol Membr Biol 25: 677682.
  • Elkins, C.A., and Nikaido, H. (2002) Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominantly by two large periplasmic loops. J Bacteriol 184: 64906498.
  • Fralick, J.A. (1996) Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli. J Bacteriol 178: 58035805.
  • Greenspan, P., and Fowler, S.D. (1985) Spectrofluorometric studies of the lipid probe, Nile red. J Lipid Res 26: 781789.
  • Hearn, E.M., Gray, M.R., and Foght, J.M. (2006) Mutations in the central cavity and periplasmic domain affect efflux activity of the resistance-nodulation-division pump EmhB from Pseudomonas fluorescens cLP6a. J Bacteriol 188: 115123.
  • Koronakis, V., Sharff, A., Koronakis, E., Luisi, B., and Hughes, C. (2000) Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405: 914919.
  • Lomovskaya, O., Warren, M.S., Lee, A., Galazzo, J., Fronko, R., Lee, M., et al. (2001) Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother 45: 105116.
  • Ma, D., Cook, D.N., Alberti, M., Pon, N.G., Nikaido, H., and Hearst, J.E. (1993) Molecular cloning and characterization of acrA and acrE genes of Escherichia coli. J Bacteriol 175: 62996313.
  • Ma, D., Cook, D.N., Alberti, M., Pon, N.G., Nikaido, H., and Hearst, J.E. (1995) Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol Microbiol 16: 4555.
  • Mao, W., Warren, M.S., Black, D.S., Satou, T., Murata, T., Nishino, T., et al. (2002) On the mechanism of substrate specificity by resistance nodulation division (RND)-type multidrug resistance pumps: the large periplasmic loops of MexD from Pseudomonas aeruginosa are involved in substrate recognition. Mol Microbiol 46: 889901.
  • Middlemiss, J.K., and Poole, K. (2004) Differential impact of MexB mutations on substrateselectivity of the MexAB-OprM multidrug efflux pump of Pseudomonas aeruginosa. J Bacteriol 186: 12581269.
  • Murakami, S., Nakashima, R., Yamashita, E., and Yamaguchi, A. (2002) Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419: 587593.
  • Murakami, S., Tamura, N., Saito, A., Hirata, T., and Yamaguchi, A. (2004) Extramembrane central pore of multidrug exporter AcrB in Escherichia coli plays an important role in drug transport. J Biol Chem 279: 37433748.
  • Murakami, S., Nakashima, R., Yamashita, E., Matsumoto, T., and Yamaguchi, A. (2006) Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443: 173179.
  • Neyfakh, A.A. (2002) Mystery of multidrug transporters: the answer can be simple. Mol Microbiol 44: 11231130.
  • Nikaido, H. (1996) Multidrug efflux pumps of Gram-negative bacteria. J Bacteriol 178: 58535859.
  • Nikaido, H. (1998) The role of outer membrane and efflux pumps in the resistance of Gram-negative bacteria. Can we improve drug access? Drug Resist Updat 1: 9398.
  • Petrek, M., Otyepka, M., Banás, P., Kosinová, P., Koca, J., and Damborský, J. (2006) CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics 7: 316.
  • Schumacher, M.A., Miller, M.C., and Brennan, R.G. (2004) Structural mechanism of the simultaneous binding of two drugs to a multidrug-binding protein. EMBO J 23: 29232930.
  • Seeger, M.A., Schiefner, A., Eicher, T., Verrey, F., Diederichs, K., and Pos, K.M. (2006) Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313: 12951298.
  • Sennhauser, G., Amstutz, P., Briand, C., Storchenegger, O., and Grütter, M.G. (2007) Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol 5: e7.
  • Su, C.C., Li, M., Gu, R., Takatsuka, Y., McDermott, G., Nikaido, H., and Yu, E.W. (2006) Conformation of the AcrB multidrug efflux pump in mutants of the putative proton relay pathway. J Bacteriol 188: 72907296.
  • Symmons, M.F., Bokma, E., Koronakis, E., Hughes, C., and Koronakis, V. (2009) The assembled structure of a complete tripartite bacterial multidrug efflux pump. Proc Nat Acad Sci USA 106: 71737178.
  • Takatsuka, Y., and Nikaido, H. (2006) Threonine-978 in the transmembrane segment of the multidrug efflux pump AcrB of Escherichia coli is crucial for drug transport as a probable component of the proton relay network. J Bacteriol 188: 72847289.
  • Takatsuka, Y., and Nikaido, H. (2007) Site-directed cross-linking shows that cleft flexibility in the periplasmic domain is needed for the multidrug efflux pump AcrB of Escherichia coli. J Bacteriol 189: 86778684.
  • Takatsuka, Y., and Nikaido, H. (2009) Covalently linked trimer of the AcrB multidrug efflux pump provides support for the functional rotating mechanism. J Bacteriol 191: 17291737.
  • Takatsuka, Y., Chen, C., and Nikaido, H. (2010) Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli. Proc Natl Acad Sci USA 107: 65596565.
  • Tamura, N., Murakami, S., Oyama, Y., Ishiguro, M., and Yamaguchi, A. (2005) Direct interaction of multidrug efflux transporter AcrB and outer membrane channel TolC detected via site-directed disulfide cross-linking. Biochemistry 44: 1111511121.
  • Tikhonova, E.B., and Zgurskaya, H.I. (2004) AcrA, AcrB, and TolC of Escherichia coli form a stable intermembrane multidrug efflux complex. J Biol Chem 279: 3211632124.
  • Trott, O., and Olson, A.J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31: 455461.
  • Wehmeier, C., Schuster, S., Fähnrich, E., Kern, W.V., and Bohnert, J.A. (2009) Site-directed mutagenesis reveals amino acid residues in the Escherichia coli RND efflux pump AcrB that confer macrolide resistance. Antimicrob Agents Chemother 53: 329330.
  • Yu, E.W., McDermott, G., Zgurskaya, H.I., Nikaido, H., and Koshland, D.E., Jr (2003) Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump. Science 300: 976980.
  • Yu, E.W., Aires, J.R., McDermott, G., and Nikaido, H. (2005) A periplasmic drug-binding site of the AcrB multidrug efflux pump: a crystallographic and site-directed mutagenesis study. J Bacteriol 187: 68046815.
  • Zgurskaya, H.I., and Nikaido, H. (1999) AcrA is a highly asymmetric protein capable of spanning the periplasm. J Mol Biol 285: 409420.