SEARCH

SEARCH BY CITATION

References

  • Albert, A. (1950) The metal-binding properties of riboflavin. Biochem J 47: xxvii.
  • Albert, A. (1953) Quantitative studies of the avidity of naturally occurring substances for trace metals. III. Pteridines, riboflavin and purines. Biochem J 54: 646654.
  • Alves-Pereira, I., Canales, J., Cabezas, A., Cordero, P.M., Costas, M.J., and Cameselle, J.C. (2008) CDP-alcohol hydrolase, a very efficient activity of the 5′-nucleotidase/UDP-sugar hydrolase encoded by the ushA gene of Yersinia intermedia and Escherichia coli. J Bacteriol 190: 61536161.
  • Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., et al. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2: 20060008.
  • Bafunno, V., Giancaspero, T.A., Brizio, C., Bufano, D., Passarella, S., Boles, E., and Barile, M. (2004) Riboflavin uptake and FAD synthesis in Saccharomyces cerevisiae mitochondria: involvement of the Flx1p carrier in FAD export. J Biol Chem 279: 95102.
  • Balch, W.E., Fox, G.E., Magrum, L.J., Woese, C.R., and Wolfe, R.S. (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43: 260296.
  • Baron, D., LaBelle, E., Coursolle, D., Gralnick, J.A., and Bond, D.R. (2009) Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. J Biol Chem 284: 2886528873.
  • Beacham, I.R., Kahana, R., Levy, L., and Yagil, E. (1973) Mutants of Escherichia coli K-12 ‘cryptic,’ or deficient in 5′-nucleotidase (uridine diphosphate-sugar hydrolase) and 3′-nucleotidase (cyclic phosphodiesterase) activity. J Bacteriol 116: 957964.
  • Berger, S.A., Rowan, K., Morrison, H.D., and Ziltener, H.J. (1996) Identification of a bacterial inhibitor of protein kinases. Mechanism and role in host cell invasion. J Biol Chem 271: 2343123437.
  • Burgess, C.M., Slotboom, D.J., Geertsma, E.R., Duurkens, R.H., Poolman, B., and Van Sinderen, D. (2006) The riboflavin transporter RibU in Lactococcus lactis: molecular characterization of gene expression and the transport mechanism. J Bacteriol 188: 27522760.
  • Burns, D.M., and Beacham, I.R. (1986) Nucleotide sequence and transcriptional analysis of the E. coli ushA gene, encoding periplasmic UDP-sugar hydrolase (5′-nucleotidase): regulation of the ushA gene, and the signal sequence of its encoded protein product. Nucl Acids Res 14: 43254342.
  • Von Canstein, H., Ogawa, J., Shimizu, S., and Lloyd, J.R. (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74: 615623.
  • Cherepanov, P.P., and Wackernagel, W. (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158: 914.
  • Coursolle, D., Baron, D.B., Bond, D.R., and Gralnick, J.A. (2010) The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J Bacteriol 192: 467474.
  • Demain, A.L. (1972) Riboflavin oversynthesis. Annu Rev Microbiol 26: 369388.
  • Dobbin, P.S., Butt, J.N., Powell, A.K., Reid, G.A., and Richardson, D.J. (1999) Characterization of a flavocytochrome that is induced during the anaerobic respiration of Fe3+ by Shewanella frigidimarina NCIMB400. Biochem J 342 (Pt 2): 439448.
  • Driscoll, M.E., Romine, M.F., Juhn, F.S., Serres, M.H., McCue, L.A., Beliaev, A.S., et al. (2007) Identification of diverse carbon utilization pathways in Shewanella oneidensis MR-1 via expression profiling. Genome Inform 18: 287298.
  • Duurkens, R.H., Tol, M.B., Geertsma, E.R., Permentier, H.P., and Slotboom, D.J. (2007) Flavin binding to the high affinity riboflavin transporter RibU. J Biol Chem 282: 1038010386.
  • Ghisla, S., Massey, V., Lhoste, J.M., and Mayhew, S.G. (1974) Fluorescence and optical characteristics of reduced flavines and flavoproteins. Biochemistry 13: 589597.
  • Glaser, L., Melo, A., and Paul, R. (1967) Uridine diphosphate sugar hydrolase. Purification of enzyme and protein inhibitor. J Biol Chem 242: 19441954.
  • Gorby, Y.A., Yanina, S., McLean, J.S., Rosso, K.M., Moyles, D., Dohnalkova, A., et al. (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA 103: 1135811363.
  • Grill, S., Yamaguchi, H., Wagner, H., Zwahlen, L., Kusch, U., and Mack, M. (2007) Identification and characterization of two Streptomyces davawensis riboflavin biosynthesis gene clusters. Arch Microbiol 188: 377387.
  • Hau, H.H., and Gralnick, J.A. (2007) Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol 61: 237258.
  • Ishige, T., Krause, M., Bott, M., Wendisch, V.F., and Sahm, H. (2003) The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. J Bacteriol 185: 45194529.
  • Juhnke, H.D., Hiltscher, H., Nasiri, H.R., Schwalbe, H., and Lancaster, C.R. (2009) Production, characterization and determination of the real catalytic properties of the putative ‘succinate dehydrogenase’ from Wolinella succinogenes. Mol Microbiol 71: 10881101.
  • Kakehi, M., Usuda, Y., Tabira, Y., and Sugimoto, S. (2007) Complete deficiency of 5′-nucleotidase activity in Escherichia coli leads to loss of growth on purine nucleotides but not of their excretion. J Mol Microbiol Biotechnol 13: 96104.
  • Kaufmann, F., and Lovley, D.R. (2001) Isolation and characterization of a soluble NADPH-dependent Fe(III) reductase from Geobacter sulfurreducens. J Bacteriol 183: 44684476.
  • Kearney, E.B., Goldenberg, J., Lipsick, J., and Perl, M. (1979) Flavokinase and FAD synthetase from Bacillus subtilis specific for reduced flavins. J Biol Chem 254: 95519557.
  • Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop, R.M., 2nd, and Peterson, K.M. (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166: 175176.
  • Kreneva, R.A., Gel'fand, M.S., Mironov, A.A., Yomantas, Y.A., Kozlov, Y.I., Mironov, A.S., and Perumov, D.A. (2000) Inactivation of the ypaA gene in Bacillus subtilis; Analysis of the Resulting Phenotypic Expression. Russian J Genet 36: 972974.
  • Lies, D.P., Hernandez, M.E., Kappler, A., Mielke, R.E., Gralnick, J.A., and Newman, D.K. (2005) Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for Biofilms. Appl Environ Microbiol 71: 44144426.
  • Losi, A., and Gartner, W. (2008) Bacterial bilin- and flavin-binding photoreceptors. Photochem Photobiol Sci 7: 11681178.
  • Lovley, D.R. (2008) The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol 19: 564571.
  • Lovley, D.R., Coates, J.D., Blunt-Harris, E.L., Phillips, E.J.P., and Woodward, J.C. (1996) Humic substances as electron acceptors for microbial respiration. Nature 382: 445448.
  • Maier, T.M., Myers, J.M., and Myers, C.R. (2003) Identification of the gene encoding the sole physiological fumarate reductase in Shewanella oneidensis MR-1. J Basic Microbiol 43: 312327.
  • Marsili, E., Baron, D.B., Shikhare, I.D., Coursolle, D., Gralnick, J.A., and Bond, D.R. (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA 105: 39683973.
  • Myers, C.R., and Nealson, K.H. (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240: 13191321.
  • Natale, P., Bruser, T., and Driessen, A.J. (2008) Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane – distinct translocases and mechanisms. Biochim Biophys Acta 1778: 17351756.
  • Nealson, K.H., and Scott, J. (2006) Ecophysiology of the genus Shewanella. In Prokaryotes. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E. (eds). New York: Springer, pp. 11331151.
  • Neu, H.C. (1967) The 5′-nucleotidase of Escherichia coli. I. Purification and properties. J Biol Chem 242: 38963904.
  • Neu, H.C., and Heppel, L.A. (1965) The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem 240: 36853692.
  • Nevin, K.P., and Lovley, D.R. (2002) Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl Environ Microbiol 68: 22942299.
  • Newman, D.K., and Kolter, R. (2000) A role for excreted quinones in extracellular electron transfer. Nature 405: 9497.
  • Pealing, S.L., Black, A.C., Manson, F.D., Ward, F.B., Chapman, S.K., and Reid, G.A. (1992) Sequence of the gene encoding flavocytochrome c from Shewanella putrefaciens: a tetraheme flavoenzyme that is a soluble fumarate reductase related to the membrane-bound enzymes from other bacteria. Biochemistry 31: 1213212140.
  • Pinchuk, G.E., Ammons, C., Culley, D.E., Li, S.M., McLean, J.S., Romine, M.F., et al. (2008) Utilization of DNA as a sole source of phosphorus, carbon, and energy by Shewanella spp.: ecological and physiological implications for dissimilatory metal reduction. Appl Environ Microbiol 74: 11981208.
  • Rhee, H.W., Choi, S.J., Yoo, S.H., Jang, Y.O., Park, H.H., Pinto, R.M., et al. (2009) A bifunctional molecule as an artificial flavin mononucleotide cyclase and a chemosensor for selective fluorescent detection of flavins. J Am Chem Soc 131: 1010710112.
  • Rittmann, D., Sorger-Herrmann, U., and Wendisch, V.F. (2005) Phosphate starvation-inducible gene ushA encodes a 5′ nucleotidase required for growth of Corynebacterium glutamicum on media with nucleotides as the phosphorus source. Appl Environ Microbiol 71: 43394344.
  • Ross, D.E., Brantley, S.L., and Tien, M. (2009) Kinetic characterization of OmcA and MtrC, terminal reductases involved in respiratory electron transfer for dissimilatory iron reduction in Shewanella oneidensis MR-1. Appl Environ Microbiol 75: 52185226.
  • Saltikov, C.W., and Newman, D.K. (2003) Genetic identification of a respiratory arsenate reductase. Proc Natl Acad Sci USA 100: 1098310988.
  • Sambrook, J., and Russell, D.W. (2001) Molecular Cloning : A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • Serres, M.H., and Riley, M. (2006) Genomic analysis of carbon source metabolism of Shewanella oneidensis MR-1: predictions versus experiments. J Bacteriol 188: 46014609.
  • Shi, L., Squier, T.C., Zachara, J.M., and Fredrickson, J.K. (2007) Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol 65: 1220.
  • Stookey, L.L. (1970) Ferrozine – a new spectrophotometric reagent for iron. Analytical Chemistry 42: 779781.
  • Strater, N. (2006) Ecto-5′-nucleotidase: structure function relationships. Purinergic Signal 2: 343350.
  • Thony-Meyer, L. (2002) Cytochrome c maturation: a complex pathway for a simple task? Biochem Soc Trans 30: 633638.
  • Turick, C.E., Tisa, L.S., and Caccavo, F., Jr (2002) Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY. Appl Environ Microbiol 68: 24362444.
  • Turner, K.L., Doherty, M.K., Heering, H.A., Armstrong, F.A., Reid, G.A., and Chapman, S.K. (1999) Redox properties of flavocytochrome c3 from Shewanella frigidimarina NCIMB400. Biochemistry 38: 33023309.
  • Velasquez-Orta, S.B., Head, I.M., Curtis, T.P., Scott, K., Lloyd, J.R., and Von Canstein, H. (2010) The effect of flavin electron shuttles in microbial fuel cells current production. Appl Microbiol Biotechnol 85: 13731381.
  • Vitreschak, A.G., Rodionov, D.A., Mironov, A.A., and Gelfand, M.S. (2002) Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucl Acids Res 30: 31413151.
  • Vogl, C., Grill, S., Schilling, O., Stulke, J., Mack, M., and Stolz, J. (2007) Characterization of riboflavin (vitamin B2) transport proteins from Bacillus subtilis and Corynebacterium glutamicum. J Bacteriol 189: 73677375.
  • Walsh, C. (1980) Flavin coenzymes: at the crossroads of biological redox chemistry. Accounts Chemical Res 13: 148155.
  • Ward, M.J., Fu, Q.S., Rhoads, K.R., Yeung, C.H., Spormann, A.M., and Criddle, C.S. (2004) A derivative of the menaquinone precursor 1,4-dihydroxy-2-naphthoate is involved in the reductive transformation of carbon tetrachloride by aerobically grown Shewanella oneidensis MR-1. Appl Microbiol Biotechnol 63: 571577.
  • Weber, G. (1950) Fluorescence of riboflavin and flavin-adenine dinucleotide. Biochem J 47: 114121.
  • Wilmes-Riesenberg, M.R., and Wanner, B.L. (1992) TnphoA and TnphoA′ elements for making and switching fusions for study of transcription, translation, and cell surface localization. J Bacteriol 174: 45584575.
  • Yagil, E., and Beacham, I.R. (1975) Uptake of adenosine 5′-monophosphate by Escherichia coli. J Bacteriol 121: 401405.
  • Yu, N.Y., Wagner, J.R., Laird, M.R., Melli, G., Rey, S., Lo, R., et al. (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26: 16081615.