SEARCH

SEARCH BY CITATION

References

  • Alvarez, H.M., and Steinbuchel, A. (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60: 367376.
  • Alves, A.M., Euverink, G.J., Bibb, M.J., and Dijkhuizen, L. (1997) Identification of ATP-dependent phosphofructokinase as a regulatory step in the glycolytic pathway of the actinomycete Streptomyces coelicolor A3(2). Appl Environ Microbiol 63: 956961.
  • Beste, D.J., Hooper, T., Stewart, G., Bonde, B., Avignone-Rossa, C., Bushell, M.E., et al. (2007) GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism. Genome Biol 8: R89.
  • Bhatt, A., Molle, V., Besra, G.S., Jacobs, W.R., Jr, and Kremer, L. (2007) The Mycobacterium tuberculosis FAS-II condensing enzymes: their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development. Mol Microbiol 64: 14421454.
  • Bishai, W. (2000) Lipid lunch for persistent pathogen. Nature 406: 683685.
  • Bloch, H., and Segal, W. (1956) Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro. J Bacteriol 72: 132141.
  • Brennan, P.J. (2003) Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinb) 83: 9197.
  • Choi, K.H., Kremer, L., Besra, G.S., and Rock, C.O. (2000) Identification and substrate specificity of beta-ketoacyl (acyl carrier protein) synthase III (mtFabH) from Mycobacterium tuberculosis. J Biol Chem 275: 2820128207.
  • Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., et al. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537544.
  • Collins, D.M., Wilson, T., Campbell, S., Buddle, B.M., Wards, B.J., Hotter, G., and De Lisle, G.W. (2002) Production of avirulent mutants of Mycobacterium bovis with vaccine properties by the use of illegitimate recombination and screening of stationary-phase cultures. Microbiology 148: 30193027.
  • Cortassa, S., Aon, J.C., Aon, M.A., and Spencer, F.T. (2000) Dynamics of metabolism and its interactions with gene expression during sporulation in Saccharomyces cerevisiae. In Advance in Microbial Physiology. Poole, R.K. (ed.). San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo: Academic Press, pp. 75115.
  • Cox, F.R., Slack, C.E., Cox, M.E., Pruden, E.L., and Martin, J.R. (1978) Rapid Tween 80 hydrolysis test for mycobacteria. J Clin Microbiol 7: 104105.
  • Daniel, J., Deb, C., Dubey, V.S., Sirakova, T.D., Abomoelak, B., Morbidoni, H.R., and Kolattukudy, P.E. (2004) Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J Bacteriol 186: 50175030.
  • Deb, C., Lee, C.M., Dubey, V.S., Daniel, J., Abomoelak, B., Sirakova, T.D., et al. (2009) A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS ONE 4: e6077.
  • Desjardin, L.E., Hayes, L.G., Sohaskey, C.D., Wayne, L.G., and Eisenach, K.D. (2001) Microaerophilic induction of the alpha-crystallin chaperone protein homologue (hspX) mRNA of Mycobacterium tuberculosis. J Bacteriol 183: 53115316.
  • Doelle, H.W. (1975) ATP-sensitive and ATP-insensitive phosphofructokinase in Escherichia coli K-12. Eur J Biochem 50: 335342.
  • Dubnau, E., Chan, J., Mohan, V.P., and Smith, I. (2005) responses of mycobacterium tuberculosis to growth in the mouse lung. Infect Immun 73: 37543757.
  • Eisenreich, W., Dandekar, T., Heesemann, J., and Goebel, W. (2010) Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev 8: 401412.
  • Fell, D.A. (1992) Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J 286 (Part 2): 313330.
  • Gago, G., Kurth, D., Diacovich, L., Tsai, S.C., and Gramajo, H. (2006) Biochemical and structural characterization of an essential acyl coenzyme A carboxylase from Mycobacterium tuberculosis. J Bacteriol 188: 477486.
  • Garton, N.J., Christensen, H., Minnikin, D.E., Adegbola, R.A., and Barer, M.R. (2002) Intracellular lipophilic inclusions of mycobacteria in vitro and in sputum. Microbiology 148: 29512958.
  • Garton, N.J., Waddell, S.J., Sherratt, A.L., Lee, S.M., Smith, R.J., Senner, C., et al. (2008) Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med 5: e75.
  • Gottschalk, G. (1985) Bacterial Metabolism, 2nd edn. New York: Springer-Verlag.
  • Gould, T.A., van de Langemheen, H., Munoz-Elias, E.J., McKinney, J.D., and Sacchettini, J.C. (2006) Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis. Mol Microbiol 61: 940947.
  • Gupta, N., and Singh, B.N. (2008) Deciphering kas operon locus in Mycobacterium aurum and genesis of a recombinant strain for rational-based drug screening. J Appl Microbiol 105: 17031710.
  • Hampshire, T., Soneji, S., Bacon, J., James, B.W., Hinds, J., Laing, K., et al. (2004) Stationary phase gene expression of Mycobacterium tuberculosis following a progressive nutrient depletion: a model for persistent organisms? Tuberculosis (Edinb) 84: 228238.
  • Harth, G., Zamecnik, P.C., Tang, J.Y., Tabatadze, D., and Horwitz, M.A. (2000) Treatment of Mycobacterium tuberculosis with antisense oligonucleotides to glutamine synthetase mRNA inhibits glutamine synthetase activity, formation of the poly-l-glutamate/glutamine cell wall structure, and bacterial replication. Proc Natl Acad Sci USA 97: 418423.
  • Harth, G., Maslesa-Galic, S., Tullius, M.V., and Horwitz, M.A. (2005) All four Mycobacterium tuberculosis glnA genes encode glutamine synthetase activities but only GlnA1 is abundantly expressed and essential for bacterial homeostasis. Mol Microbiol 58: 11571172.
  • Honer zu Bentrup, K., and Russell, D.G. (2001) Mycobacterial persistence: adaptation to a changing environment. Trends Microbiol 9: 597605.
  • Hoyt, J.C., Johnson, K.E., and Reeves, H.C. (1991) Purification and characterization of Acinetobacter calcoaceticus isocitrate lyase. J Bacteriol 173: 68446848.
  • Jackson, M., Stadthagen, G., and Gicquel, B. (2007) Long-chain multiple methyl-branched fatty acid-containing lipids of Mycobacterium tuberculosis: biosynthesis, transport, regulation and biological activities. Tuberculosis (Edinb) 87: 7886.
  • Jain, M., Petzold, C.J., Schelle, M.W., Leavell, M.D., Mougous, J.D., Bertozzi, C.R., et al. (2007) Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling. Proc Natl Acad Sci USA 104: 51335138.
  • Jayanthi Bai, N., Ramachandra Pai, M., Suryanarayana Murthy, P., and Venkitasubramanian, T.A. (1975) Pathways of carbohydrate metabolism in mycobacterium tuberculosis H37Rv1. Can J Microbiol 21: 16881691.
  • Karakousis, P.C., Bishai, W.R., and Dorman, S.E. (2004) Mycobacterium tuberculosis cell envelope lipids and the host immune response. Cell Microbiol 6: 105116.
  • Kempf, B., and Bremer, E. (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170: 319330.
  • Kotlarz, D., Garreau, H., and Buc, H. (1975) Regulation of the amount and of the activity of phosphofructokinases and pyruvate kinases in Escherichia coli. Biochim Biophys Acta 381: 257268.
  • Lavollay, M., Arthur, M., Fourgeaud, M., Dubost, L., Marie, A., Veziris, N., et al. (2008) The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by l,d-transpeptidation. J Bacteriol 190: 43604366.
  • Liu, K., Yu, J., and Russell, D.G. (2003) pckA-deficient Mycobacterium bovis BCG shows attenuated virulence in mice and in macrophages. Microbiology 149: 18291835.
  • Low, K.L., Srinivasa Rao, P.S., Shui, G., Bendt, A.K., Pethe, K., Dick, T., and Wenk, M.R. (2009) Triacylglycerol utilization is required for the re-growth of in vitro hypoxic non-replicating Mycobacterium bovis Bacillus Calmette-Guerin. J Bacteriol 191: 50375043.
  • McCarthy, C.M. (1983) Continuous culture of Mycobacterium avium limited for ammonia. Am Rev Respir Dis 127: 193197.
  • McKinney, J.D., Honer zu Bentrup, K., Munoz-Elias, E.J., Miczak, A., Chen, B., Chan, W.T., et al. (2000) Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406: 735738.
  • Manganelli, R., Voskuil, M.I., Schoolnik, G.K., and Smith, I. (2001) The Mycobacterium tuberculosis ECF sigma factor sigmaE: role in global gene expression and survival in macrophages. Mol Microbiol 41: 423437.
  • Marrero, J., Rhee, K.Y., Schnappinger, D., Pethe, K., and Ehrt, S. (2010) Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci USA 107: 98199824.
  • Movahedzadeh, F., Rison, S.C., Wheeler, P.R., Kendall, S.L., Larson, T.J., and Stoker, N.G. (2004) The Mycobacterium tuberculosis Rv1099c gene encodes a GlpX-like class II fructose 1,6-bisphosphatase. Microbiology 150: 34993505.
  • Mukhopadhyay, B., Concar, E.M., and Wolfe, R.S. (2001) A GTP-dependent vertebrate-type phosphoenolpyruvate carboxykinase from Mycobacterium smegmatis. J Biol Chem 276: 1613716145.
  • Munoz-Elias, E.J., and McKinney, J.D. (2005) Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11: 638644.
  • Munoz-Elias, E.J., Upton, A.M., Cherian, J., and McKinney, J.D. (2006) Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol Microbiol 60: 11091122.
  • Murphy, D.J. (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40: 325438.
  • Russell, D.G., Cardona, P.J., Kim, M.J., Allain, S., and Altare, F. (2009) Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol 10: 943948.
  • Sassetti, C.M., and Rubin, E.J. (2003) Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA 100: 1298912994.
  • Sauer, U., and Eikmanns, B.J. (2005) The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 29: 765794.
  • Savvi, S., Warner, D.F., Kana, B.D., McKinney, J.D., Mizrahi, V., and Dawes, S.S. (2008) Functional characterization of a vitamin B12-dependent methylmalonyl pathway in Mycobacterium tuberculosis: implications for propionate metabolism during growth on fatty acids. J Bacteriol 190: 38863895.
  • Schnappinger, D., Ehrt, S., Voskuil, M.I., Liu, Y., Mangan, J.A., Monahan, I.M., et al. (2003) Transcriptional adaptation of mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198: 693704.
  • Shi, L., Jung, Y.J., Tyagi, S., Gennaro, M.L., and North, R.J. (2003) Expression of Th1-mediated immunity in mouse lungs induces a Mycobacterium tuberculosis transcription pattern characteristic of nonreplicating persistence. Proc Natl Acad Sci USA 100: 241246.
  • Shi, L., Sohaskey, C.D., Kana, B.D., Dawes, S., North, R.J., Mizrahi, V., and Gennaro, M.L. (2005) Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration. Proc Natl Acad Sci USA 102: 1562915634.
  • Sirakova, T.D., Dubey, V.S., Deb, C., Daniel, J., Korotkova, T.A., Abomoelak, B., and Kolattukudy, P.E. (2006) Identification of a diacylglycerol acyltransferase gene involved in accumulation of triacylglycerol in Mycobacterium tuberculosis under stress. Microbiology 152: 27172725.
  • Tang, Y.J., Shui, W., Myers, S., Feng, X., Bertozzi, C., and Keasling, J.D. (2009) Central metabolism in Mycobacterium smegmatis during the transition from O2-rich to O2-poor conditions as studied by isotopomer-assisted metabolite analysis. Biotechnol Lett 31: 12331240.
  • Thomas, A.D., Doelle, H.W., Westwood, A.W., and Gordon, G.L. (1972) Effect of oxygen on several enzymes involved in the aerobic and anaerobic utilization of glucose in Escherichia coli. J Bacteriol 112: 10991105.
  • Tian, J., Bryk, R., Itoh, M., Suematsu, M., and Nathan, C. (2005) Variant tricarboxylic acid cycle in Mycobacterium tuberculosis: identification of alpha-ketoglutarate decarboxylase. Proc Natl Acad Sci USA 102: 1067010675.
  • Timm, J., Post, F.A., Bekker, L.G., Walther, G.B., Wainwright, H.C., Manganelli, R., et al. (2003) Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc Natl Acad Sci USA 100: 1432114326.
  • Tullius, M.V., Harth, G., and Horwitz, M.A. (2001) High extracellular levels of Mycobacterium tuberculosis glutamine synthetase and superoxide dismutase in actively growing cultures are due to high expression and extracellular stability rather than to a protein-specific export mechanism. Infect Immun 69: 63486363.
  • Tullius, M.V., Harth, G., and Horwitz, M.A. (2003) Glutamine synthetase GlnA1 is essential for growth of Mycobacterium tuberculosis in human THP-1 macrophages and guinea pigs. Infect Immun 71: 39273936.
  • Voskuil, M.I., Schnappinger, D., Visconti, K.C., Harrell, M.I., Dolganov, G.M., Sherman, D.R., and Schoolnik, G.K. (2003) Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 198: 705713.
  • Walsh, K., and Koshland, D.E., Jr (1985) Branch point control by the phosphorylation state of isocitrate dehydrogenase. A quantitative examination of fluxes during a regulatory transition. J Biol Chem 260: 84308437.
  • Waltermann, M., and Steinbuchel, A. (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol 187: 36073619.
  • Wayne, L.G., and Hayes, L.G. (1996) An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64: 20622069.
  • Wendisch, V.F., Spies, M., Reinscheid, D.J., Schnicke, S., Sahm, H., and Eikmanns, B.J. (1997) Regulation of acetate metabolism in Corynebacterium glutamicum: transcriptional control of the isocitrate lyase and malate synthase genes. Arch Microbiol 168: 262269.
  • Wheeler, P.R., and Ratledge, C. (1994) Metabolism of Mycobacterium tuberculosis. In Tuberculosis: Pathogenesis, Protection, and Control. Bloom, B.R.E. (ed.). Washington, DC: American Society for Microbiology Press, pp. 353385.
  • Wilson, M., DeRisi, J., Kristensen, H.H., Imboden, P., Rane, S., Brown, P.O., and Schoolnik, G.K. (1999) Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc Natl Acad Sci USA 96: 1283312838.
  • Zhang, Y. (2004) Persistent and dormant tubercle bacilli and latent tuberculosis. Front Biosci 9: 11361156.