SEARCH

SEARCH BY CITATION

References

  • Av-Gay, Y., and Everett, M. (2000) The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. Trends Microbiol 8: 238244.
  • Banerjee, A., Dubnau, E., Quemard, A., Balasubramanian, V., Um, K.S., Wilson, T., et al. (1994) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263: 227230.
  • Banerjee, A., Sugantino, M., Sacchettini, J.C., and Jacobs, W.R., Jr (1998) The mabA gene from the inhA operon of Mycobacterium tuberculosis encodes a 3-ketoacyl reductase that fails to confer isoniazid resistance. Microbiology 144 (Part 10): 26972704.
  • Bardarov, S., Bardarov, S., Jr, Pavelka, M.S., Jr, Sambandamurthy, V., Larsen, M., Tufariello, J., et al. (2002) Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148: 30073017.
  • Barthe, P., Roumestand, C., Canova, M.J., Kremer, L., Hurard, C., Molle, V., and Cohen-Gonsaud, M. (2009) Dynamic and structural characterization of a bacterial FHA protein reveals a new autoinhibition mechanism. Structure 17: 568578.
  • Barthe, P., Mukamolova, G.V., Roumestand, C., and Cohen-Gonsaud, M. (2010) The structure of PknB extracellular PASTA domain from Mycobacterium tuberculosis suggests a ligand-dependent kinase activation. Structure 18: 606615.
  • Betts, J.C., Lukey, P.T., Robb, L.C., McAdam, R.A., and Duncan, K. (2002) Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43: 717731.
  • Bhatt, A., Fujiwara, N., Bhatt, K., Gurcha, S.S., Kremer, L., Chen, B., et al. (2007a) Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. Proc Natl Acad Sci USA 104: 51575162.
  • Bhatt, A., Molle, V., Besra, G.S., Jacobs, W.R., Jr, and Kremer, L. (2007b) The Mycobacterium tuberculosis FAS-II condensing enzymes: their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development. Mol Microbiol 64: 14421454.
  • Bloch, K. (1975) Fatty acid synthases from Mycobacterium phlei. Methods Enzymol 35: 8490.
  • Brown, A.K., Sridharan, S., Kremer, L., Lindenberg, S., Dover, L.G., Sacchettini, J.C., and Besra, G.S. (2005) Probing the mechanism of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthase III mtFabH: factors influencing catalysis and substrate specificity. J Biol Chem 280: 3253932547.
  • Brown, A.K., Bhatt, A., Singh, A., Saparia, E., Evans, A.F., and Besra, G.S. (2007) Identification of the dehydratase component of the mycobacterial mycolic acid-synthesizing fatty acid synthase-II complex. Microbiology 153: 41664173.
  • Canova, M.J., Kremer, L., and Molle, V. (2008) pETPhos: a customized expression vector designed for further characterization of Ser/Thr/Tyr protein kinases and their substrates. Plasmid 60: 149153.
  • Canova, M.J., Kremer, L., and Molle, V. (2009) The Mycobacterium tuberculosis GroEL1 chaperone is a substrate of Ser/Thr protein kinases. J Bacteriol 191: 28762883.
  • Choi, K.H., Kremer, L., Besra, G.S., and Rock, C.O. (2000) Identification and substrate specificity of beta-ketoacyl (acyl carrier protein) synthase III (mtFabH) from Mycobacterium tuberculosis. J Biol Chem 275: 2820128207.
  • Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., et al. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537544.
  • Dao, D.N., Sweeney, K., Hsu, T., Gurcha, S.S., Nascimento, I.P., Roshevsky, D., et al. (2008) Mycolic acid modification by the mmaA4 gene of M. tuberculosis modulates IL-12 production. PLoS Pathog 4: e1000081.
  • Dessen, A., Quemard, A., Blanchard, J.S., Jacobs, W.R., Jr, and Sacchettini, J.C. (1995) Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science 267: 16381641.
  • Dover, L.G., Alderwick, L., Bhowruth, V., Brown, A.K., Kremer, L., and Besra, G.S. (2008) Antibiotics and new inhibitors of the cell wall. In Mycobacterial Cell Envelope. Daffé, M., and Reyrat, J.M. (eds). Washington, DC: ASM Press, pp. 107131.
  • Dubnau, E., Chan, J., Raynaud, C., Mohan, V.P., Laneelle, M.A., Yu, K., et al. (2000) Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol Microbiol 36: 630637.
  • am Ende, C.W., Knudson, S.E., Liu, N., Childs, J., Sullivan, T.J., Boyne, M., et al. (2008) Synthesis and in vitro antimycobacterial activity of B-ring modified diaryl ether InhA inhibitors. Bioorg Med Chem Lett 18: 30293033.
  • Fiuza, M., Canova, M.J., Zanella-Cleon, I., Becchi, M., Cozzone, A.J., Mateos, L.M., et al. (2008) From the characterization of the four serine/threonine protein kinases (PknA/B/G/L) of Corynebacterium glutamicum toward the role of PknA and PknB in cell division. J Biol Chem 283: 1809918112.
  • Freundlich, J.S., Wang, F., Vilcheze, C., Gulten, G., Langley, R., Schiehser, G.A., et al. (2009) Triclosan derivatives: towards potent inhibitors of drug-sensitive and drug-resistant Mycobacterium tuberculosis. ChemMedChem 4: 241248.
  • Glickman, M.S., Cox, J.S., and Jacobs, W.R., Jr (2000) A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell 5: 717727.
  • Hale, K.J., Hummersone, M.G., Manaviazar, S., and Frigerio, M. (2002) The chemistry and biology of the bryostatin antitumour macrolides. Nat Prod Rep 19: 413453.
  • Hazbon, M.H., Brimacombe, M., Bobadilla del Valle, M., Cavatore, M., Guerrero, M.I., Varma-Basil, M., et al. (2006) Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 50: 26402649.
  • He, X., Alian, A., Stroud, R., and Ortiz de Montellano, P.R. (2006) Pyrrolidine carboxamides as a novel class of inhibitors of enoyl acyl carrier protein reductase from Mycobacterium tuberculosis. J Med Chem 49: 63086323.
  • He, X., Alian, A., and Ortiz de Montellano, P.R. (2007) Inhibition of the Mycobacterium tuberculosis enoyl acyl carrier protein reductase InhA by arylamides. Bioorg Med Chem 15: 66496658.
  • Khan, S., Nagarajan, S.N., Parikh, A., Samantaray, S., Singh, A., Kumar, D., et al. (2010) Phosphorylation of enoyl-ACP reductase InhA impacts mycobacterial growth and survival. J Biol Chem doi:10.1074/jbc.M110.143131.
  • Kremer, L., Baulard, A.R., and Besra, G.S. (2000) Genetics of mycolic acid biosynthesis. In Molecular Genetics of Mycobacteria. Jacobs, W.R., Jr, and Hatfull, G.F. (eds). Washington, DC: ASM Press, pp. 173190.
  • Kremer, L., Dover, L.G., Carrere, S., Nampoothiri, K.M., Lesjean, S., Brown, A.K., et al. (2002) Mycolic acid biosynthesis and enzymic characterization of the beta-ketoacyl-ACP synthase A-condensing enzyme from Mycobacterium tuberculosis. Biochem J 364: 423430.
  • Kremer, L., Dover, L.G., Morbidoni, H.R., Vilcheze, C., Maughan, W.N., Baulard, A., et al. (2003) Inhibition of InhA activity, but not KasA activity, induces formation of a KasA-containing complex in mycobacteria. J Biol Chem 278: 2054720554.
  • Lacave, C., Laneelle, M.A., Daffe, M., Montrozier, H., Rols, M.P., and Asselineau, C. (1987) Structural and metabolic study of the mycolic acids of Mycobacterium fortuitum. Eur J Biochem 163: 369378.
  • Lacave, C., Laneelle, M.A., Daffe, M., Montrozier, H., and Laneelle, G. (1989) Mycolic acid metabolic filiation and location in Mycobacterium aurum and Mycobacterium phlei. Eur J Biochem 181: 459466.
  • Larsen, M.H., Vilcheze, C., Kremer, L., Besra, G.S., Parsons, L., Salfinger, M., et al. (2002) Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis. Mol Microbiol 46: 453466.
  • Li, B., and Lin, S.X. (1996) Fluorescence–energy transfer in human estradiol 17 beta-dehydrogenase–NADPH complex and studies on the coenzyme binding. Eur J Biochem 235: 180186.
  • McNeil, M., Daffe, M., and Brennan, P.J. (1991) Location of the mycolyl ester substituents in the cell walls of mycobacteria. J Biol Chem 266: 1321713223.
  • Marrakchi, H., Ducasse, S., Labesse, G., Montrozier, H., Margeat, E., Emorine, L., et al. (2002) MabA (FabG1), a Mycobacterium tuberculosis protein involved in the long-chain fatty acid elongation system FAS-II. Microbiology 148: 951960.
  • Molle, V., and Kremer, L. (2010) Division and cell envelope regulation by Ser/Thr phosphorylation: Mycobacterium shows the way. Mol Microbiol 75: 10641077.
  • Molle, V., Kremer, L., Girard-Blanc, C., Besra, G.S., Cozzone, A.J., and Prost, J.F. (2003) An FHA phosphoprotein recognition domain mediates protein EmbR phosphorylation by PknH, a Ser/Thr protein kinase from Mycobacterium tuberculosis. Biochemistry 42: 1530015309.
  • Molle, V., Brown, A.K., Besra, G.S., Cozzone, A.J., and Kremer, L. (2006) The condensing activities of the Mycobacterium tuberculosis type II fatty acid synthase are differentially regulated by phosphorylation. J Biol Chem 281: 3009430103.
  • Ojha, A.K., Baughn, A.D., Sambandan, D., Hsu, T., Trivelli, X., Guerardel, Y., et al. (2008) Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol 69: 164174.
  • Oliveira, J.S., Vasconcelos, I.B., Moreira, I.S., Santos, D.S., and Basso, L.A. (2007) Enoyl reductases as targets for the development of anti-tubercular and anti-malarial agents. Curr Drug Targets 8: 399411.
  • Parikh, S., Moynihan, D.P., Xiao, G., and Tonge, P.J. (1999) Roles of tyrosine 158 and lysine 165 in the catalytic mechanism of InhA, the enoyl-ACP reductase from Mycobacterium tuberculosis. Biochemistry 38: 1362313634.
  • Prisic, S., Dankwa, S., Schwartz, D., Chou, M.F., Locasale, J.W., Kang, C.M., et al. (2010) Extensive phosphorylation with overlapping specificity by Mycobacterium tuberculosis serine/threonine protein kinases. Proc Natl Acad Sci USA 107: 75217526.
  • Quemard, A., Sacchettini, J.C., Dessen, A., Vilcheze, C., Bittman, R., Jacobs, W.R., Jr, and Blanchard, J.S. (1995) Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Biochemistry 34: 82358241.
  • Ramaswamy, S.V., Reich, R., Dou, S.J., Jasperse, L., Pan, X., Wanger, A., et al. (2003) Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 47: 12411250.
  • Rao, V., Gao, F., Chen, B., Jacobs, W.R., Jr, and Glickman, M.S. (2006) Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis-induced inflammation and virulence. J Clin Invest 116: 16601667.
  • Rozwarski, D.A., Grant, G.A., Barton, D.H., Jacobs, W.R., Jr, and Sacchettini, J.C. (1998) Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science 279: 98102.
  • Sacco, E., Covarrubias, A.S., O'Hare, H.M., Carroll, P., Eynard, N., Jones, T.A., et al. (2007) The missing piece of the type II fatty acid synthase system from Mycobacterium tuberculosis. Proc Natl Acad Sci USA 104: 1462814633.
  • Scarsdale, J.N., Kazanina, G., He, X., Reynolds, K.A., and Wright, H.T. (2001) Crystal structure of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthase III. J Biol Chem 276: 2051620522.
  • Schaeffer, M.L., Agnihotri, G., Volker, C., Kallender, H., Brennan, P.J., and Lonsdale, J.T. (2001) Purification and biochemical characterization of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthases KasA and KasB. J Biol Chem 276: 4702947037.
  • Shah, I.M., Laaberki, M.H., Popham, D.L., and Dworkin, J. (2008) A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135: 486496.
  • Slayden, R.A., Lee, R.E., Armour, J.W., Cooper, A.M., Orme, I.M., Brennan, P.J., and Besra, G.S. (1996) Antimycobacterial action of thiolactomycin: an inhibitor of fatty acid and mycolic acid synthesis. Antimicrob Agents Chemother 40: 28132819.
  • Stover, C.K., de la Cruz, V.F., Fuerst, T.R., Burlein, J.E., Benson, L.A., Bennett, L.T., et al. (1991) New use of BCG for recombinant vaccines. Nature 351: 456460.
  • Takayama, K., Wang, L., and David, H.L. (1972) Effect of isoniazid on the in vivo mycolic acid synthesis, cell growth, and viability of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2: 2935.
  • Takayama, K., Wang, C., and Besra, G.S. (2005) Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 18: 81101.
  • Tonge, P.J., Kisker, C., and Slayden, R.A. (2007) Development of modern InhA inhibitors to combat drug resistant strains of Mycobacterium tuberculosis. Curr Top Med Chem 7: 489498.
  • Veyron-Churlet, R., Molle, V., Taylor, R.C., Brown, A.K., Besra, G.S., Zanella-Cleon, I., et al. (2009) The Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthase III activity is inhibited by phosphorylation on a single threonine residue. J Biol Chem 284: 64146424.
  • Veyron-Churlet, R., Zanella-Cleon, I., Cohen-Gonsaud, M., Molle, V., and Kremer, L. (2010) Phosphorylation of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein reductase MabA regulates mycolic acid biosynthesis. J Biol Chem 285: 1271412725.
  • Vilcheze, C., and Jacobs, W.R., Jr (2007) The mechanism of isoniazid killing: clarity through the scope of genetics. Annu Rev Microbiol 61: 3550.
  • Vilcheze, C., Morbidoni, H.R., Weisbrod, T.R., Iwamoto, H., Kuo, M., Sacchettini, J.C., and Jacobs, W.R., Jr (2000) Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. J Bacteriol 182: 40594067.
  • Vilcheze, C., Wang, F., Arai, M., Hazbon, M.H., Colangeli, R., Kremer, L., et al. (2006) Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nat Med 12: 10271029.
  • Wang, F., Langley, R., Gulten, G., Dover, L.G., Besra, G.S., Jacobs, W.R., Jr, and Sacchettini, J.C. (2007) Mechanism of thioamide drug action against tuberculosis and leprosy. J Exp Med 204: 7378.
  • Wehenkel, A., Bellinzoni, M., Grana, M., Duran, R., Villarino, A., Fernandez, P., et al. (2008) Mycobacterial Ser/Thr protein kinases and phosphatases: physiological roles and therapeutic potential. Biochim Biophys Acta 1784: 193202.
  • Zimhony, O., Vilcheze, C., and Jacobs, W.R., Jr (2004) Characterization of Mycobacterium smegmatis expressing the Mycobacterium tuberculosis fatty acid synthase I (fas1) gene. J Bacteriol 186: 40514055.