SEARCH

SEARCH BY CITATION

References

  • Aebi, H. (1984) Catalase in vitro. Methods Enzymol 105: 121126.
  • Aerts, A.M., Francois, I.E., Bammens, L., Cammue, B.P., Smets, B., Winderickx, J., et al. (2006) Level of M(IP)2C sphingolipid affects plant defensin sensitivity, oxidative stress resistance and chronological life-span in yeast. FEBS Lett 580: 19031907.
  • Aerts, A.M., Zabrocki, P., Francois, I.E., Carmona-Gutierrez, D., Govaert, G., Mao, C., et al. (2008) Ydc1p ceramidase triggers organelle fragmentation, apoptosis and accelerated ageing in yeast. Cell Mol Life Sci 65: 19331942.
  • Almeida, T., Marques, M., Mojzita, D., Amorim, M.A., Silva, R.D., Almeida, B., et al. (2008) Isc1p plays a key role in hydrogen peroxide resistance and chronological lifespan through modulation of iron levels and apoptosis. Mol Biol Cell 19: 865876.
  • Angeles de la Torre-Ruiz, M., Torres, J., Arino, J., and Herrero, E. (2002) Sit4 is required for proper modulation of the biological functions mediated by Pkc1 and the cell integrity pathway in Saccharomyces cerevisiae. J Biol Chem 277: 3346833476.
  • Ausubel, F.A., Brent, R., Kingston, D., Moore, D., Seidman, J.G., Smith, J.A., and Struhl, K. (1998) Current Protocols in Molecular Biology. New York: John Wiley and sons.
  • Bastians, H., and Ponstingl, H. (1996) The novel human protein serine/threonine phosphatase 6 is a functional homologue of budding yeast Sit4p and fission yeast ppe1, which are involved in cell cycle regulation. J Cell Sci 109: 28652874.
  • Conyers, S.M., and Kidwell, D.A. (1991) Chromogenic substrates for horseradish peroxidase. Anal Biochem 192: 207211.
  • Costa, V.M., Amorim, M.A., Quintanilha, A., and Moradas-Ferreira, P. (2002) Hydrogen peroxide-induced carbonylation of key metabolic enzymes in Saccharomyces cerevisiae: the involvement of the oxidative stress response regulators Yap1 and Skn7. Free Radic Biol Med 33: 15071515.
  • Cowart, L.A., Okamoto, Y., Lu, X., and Hannun, Y.A. (2006) Distinct roles for de novo versus hydrolytic pathways of sphingolipid biosynthesis in Saccharomyces cerevisiae. Biochem J 393: 733740.
  • Di Como, C.J., and Arndt, K.T. (1996) Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev 10: 19041916.
  • Di Como, C.J., Bose, R., and Arndt, K.T. (1995) Overexpression of SIS2, which contains an extremely acidic region, increases the expression of SWI4, CLN1 and CLN2 in sit4 mutants. Genetics 139: 95107.
  • Dickson, R.C. (2008) New insights into sphingolipid metabolism and function in budding yeast. J Lipid Res 49: 909921.
  • Fabrizio, P., and Longo, V.D. (2003) The chronological life span of Saccharomyces cerevisiae. Aging Cell 2: 7381.
  • Fernandez-Sarabia, M.J., Sutton, A., Zhong, T., and Arndt, K.T. (1992) SIT4 protein phosphatase is required for the normal accumulation of SWI4, CLN1, CLN2, and HCS26 RNAs during late G1. Genes Dev 6: 24172428.
  • Francis, B.R., White, K.H., and Thorsness, P.E. (2007) Mutations in the Atp1p and Atp3p subunits of yeast ATP synthase differentially affect respiration and fermentation in Saccharomyces cerevisiae. J Bioenerg Biomembr 39: 127144.
  • Hannun, Y.A., and Obeid, L.M. (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9: 139150.
  • Hayashi, N., Nomura, T., Sakumoto, N., Mukai, Y., Kaneko, Y., Harashima, S., and Murakami, S. (2005) The SIT4 gene, which encodes protein phosphatase 2A, is required for telomere function in Saccharomyces cerevisiae. Curr Genet 47: 359367.
  • Jablonka, W., Guzman, S., Ramirez, J., and Montero-Lomeli, M. (2006) Deviation of carbohydrate metabolism by the SIT4 phosphatase in Saccharomyces cerevisiae. Biochim Biophys Acta 1760: 12811291.
  • Jazwinski, S.M. (2005) Yeast longevity and aging – the mitochondrial connection. Mech Ageing Dev 126: 243248.
  • Jiang, J.C., Kirchman, P.A., Allen, M., and Jazwinski, S.M. (2004) Suppressor analysis points to the subtle role of the LAG1 ceramide synthase gene in determining yeast longevity. Exp Gerontol 39: 9991009.
  • Jin, C., Barrientos, A., Epstein, C.B., Butow, R.A., and Tzagoloff, A. (2007) SIT4 regulation of Mig1p-mediated catabolite repression in Saccharomyces cerevisiae. FEBS Lett 581: 56585663.
  • Kitagaki, H., Cowart, L.A., Matmati, N., Vaena de Avalos, S., Novgorodov, S.A., Zeidan, Y.H., et al. (2007) Isc1 regulates sphingolipid metabolism in yeast mitochondria. Biochim Biophys Acta 1768: 28492861.
  • Kitagaki, H., Cowart, L.A., Matmati, N., Montefusco, D., Gandy, J., de Avalos, S.V., et al. (2009) ISC1-dependent metabolic adaptation reveals an indispensable role for mitochondria in induction of nuclear genes during the diauxic shift in Saccharomyces cerevisiae. J Biol Chem 284: 1081810830.
  • Laun, P., Ramachandran, L., Jarolim, S., Herker, E., Liang, P., Wang, J., et al. (2005) A comparison of the aging and apoptotic transcriptome of Saccharomyces cerevisiae. FEMS Yeast Res 5: 12611272.
  • Li, W., Sun, L., Liang, Q., Wang, J., Mo, W., and Zhou, B. (2006) Yeast AMID homologue Ndi1p displays respiration-restricted apoptotic activity and is involved in chronological aging. Mol Biol Cell 17: 18021811.
  • López-Mirabal, H.R., Winther, J.R., and Kielland-Brandt, M.C. (2008) Oxidant resistance in a yeast mutant deficient in the Sit4 phosphatase. Curr Genet 53: 275286.
  • McCourt, P.C., Morgan, J.M., and Nickels, J.T., Jr (2009) Stress-induced ceramide-activated protein phosphatase can compensate for loss of amphiphysin-like activity in Saccharomyces cerevisiae and functions to reinitiate endocytosis. J Biol Chem 284: 1193011941.
  • Marini, A.M., Soussi-Boudekou, S., Vissers, S., and Andre, B. (1997) A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol 17: 42824293.
  • Masuda, C.A., Ramirez, J., Pena, A., and Montero-Lomeli, M. (2000) Regulation of monovalent ion homeostasis and pH by the Ser-Thr protein phosphatase SIT4 in Saccharomyces cerevisiae. J Biol Chem 275: 3095730961.
  • Mesquita, A., Weinberger, M., Silva, A., Sampaio-Marques, B., Almeida, B., Leão, C., et al. (2010) Caloric restriction or catalase inactivation extend yeast chronological lifespan by inducing H2O2 and SOD activity. Proc Natl Acad Sci USA 107: 1512315128.
  • Moradas-Ferreira, P., and Costa, V. (2000) Adaptive response of the yeast Saccharomyces cerevisiae to reactive oxygen species: defences, damage and death. Redox Rep 5: 277285.
  • Murphy, M.P. (2009) How mitochondria produce reactive oxygen species. Biochem J 417: 113.
  • Nickels, J.T., and Broach, J.R. (1996) A ceramide-activated protein phosphatase mediates ceramide-induced G1 arrest of Saccharomyces cerevisiae. Genes Dev 10: 382394.
  • Petrova, V.Y., Drescher, D., Kujumdzieva, A.V., and Schmitt, M.J. (2004) Dual targeting of yeast catalase A to peroxisomes and mitochondria. Biochem J 380: 393400.
  • Powers, R.W., 3rd, Kaeberlein, M., Caldwell, S.D., Kennedy, B.K., and Fields, S. (2006) Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20: 174184.
  • Poyton, R.O., Goehring, B., Droste, M., Sevarino, K.A., Allen, L.A., and Zhao, X.J. (1995) Cytochrome-c oxidase from Saccharomyces cerevisiae. Methods Enzymol 260: 97116.
  • Santangelo, G.M. (2006) Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70: 253282.
  • Shimanuki, M., Kinoshita, N., Ohkura, H., Yoshida, T., Toda, T., and Yanagida, M. (1993) Isolation and characterization of the fission yeast protein phosphatase gene ppe1+ involved in cell shape control and mitosis. Mol Biol Cell 4: 303313.
  • Singer, T., Haefner, S., Hoffmann, M., Fischer, M., Ilyina, J., and Hilt, W. (2003) Sit4 phosphatase is functionally linked to the ubiquitin-proteasome system. Genetics 164: 13051321.
  • Smith, D.L., Jr, McClure, J.M., Matecic, M., and Smith, J.S. (2007) Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins. Aging Cell 6: 649662.
  • Tabuchi, M., Audhya, A., Parsons, A.B., Boone, C., and Emr, S.D. (2006) The phosphatidylinositol 4,5-biphosphate and TORC2 binding proteins Slm1 and Slm2 function in sphingolipid regulation. Mol Cell Biol 26: 58615875.
  • Tate, J.J., Feller, A., Dubois, E., and Cooper, T.G. (2006) Saccharomyces cerevisiae Sit4 phosphatase is active irrespective of the nitrogen source provided, and Gln3 phosphorylation levels become nitrogen source-responsive in a sit4-deleted strain. J Biol Chem 281: 3798037992.
  • Vaena de Avalos, S., Okamoto, Y., and Hannun, Y.A. (2004) Activation and localization of inositol phosphosphingolipid phospholipase C, Isc1p, to the mitochondria during growth of Saccharomyces cerevisiae. J Biol Chem 279: 1153711545.
  • Vaena de Avalos, S., Su, X., Zhang, M., Okamoto, Y., Dowhan, W., and Hannun, Y.A. (2005) The phosphatidylglycerol/cardiolipin biosynthetic pathway is required for the activation of inositol phosphosphingolipid phospholipase C, Isc1p, during growth of Saccharomyces cerevisiae. J Biol Chem 280: 71707177.
  • Wei, M., Fabrizio, P., Hu, J., Ge, H., Cheng, C., Li, L., and Longo, V.D. (2008) Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet 4: e13.
  • Wei, M., Fabrizio, P., Madia, F., Hu, J., Ge, H., Li, L.M., and Longo, V.D. (2009) Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension. PLoS Genet 5: e1000467.
  • Won, J.S., and Singh, I. (2006) Sphingolipid signaling and redox regulation. Free Radic Biol Med 40: 18751888.