SEARCH

SEARCH BY CITATION

References

  • Ames, B.N., and Dubin, D.T. (1960) The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem 235: 769775.
  • Banerjee, A., Dubnau, E., Quemard, A., Balasubramanian, V., Um, K.S., Wilson, T., et al. (1994) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263: 227230.
  • Bardarov, S., Bardarov, S., Jr, Pavelka, M.S., Jr, Sambandamurthy, V., Larsen, M., Tufariello, J., et al. (2002) Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148: 30073017.
  • Baulard, A.R., Betts, J.C., Engohang-Ndong, J., Quan, S., McAdam, R.A., Brennan, P.J., et al. (2000) Activation of the pro-drug ethionamide is regulated in mycobacteria. J Biol Chem 275: 2832628331.
  • Bekierkunst, A. (1966) Nicotinamide-adenine dinucleotide in tubercle bacilli exposed to isoniazid. Science 152: 525526.
  • Bernstein, J.W., Lott, A., Steinberg, B.A., and Yale, H.L. (1952) Chemotherapy of experimental tuberculosis. Am Rev Tuberc 65: 357374.
  • Bessman, M.J., Frick, D.N., and O'Handley, S.F. (1996) The MutT proteins or ‘nudix’ hydrolases, a family of versatile, widely distributed, ‘housecleaning’ enzymes. J Biol Chem 271: 2505925062.
  • Boshoff, H.I., Xu, X., Tahlan, K., Dowd, C.S., Pethe, K., Camacho, L.R., et al. (2008) Biosynthesis and recycling of nicotinamide cofactors in Mycobacterium tuberculosis. An essential role for NAD innonreplicating bacilli. J Biol Chem 283: 1932919341.
  • Brossier, F., Veziris, N., Truffot-Pernot, C., Jarlier, V., and Sougakoff, W. (2011) Molecular investigation of resistance to the antituberculous drug ethionamide in multidrug-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 55: 355360.
  • DeBarber, A.E., Mdluli, K., Bosman, M., Bekker, L.G., and Barry, C.E., 3rd (2000) Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proc Natl Acad Sci USA 97: 96779682.
  • Dunn, C.A., O'Handley, S.F., Frick, D.N., and Bessman, M.J. (1999) Studies on the ADP-ribose pyrophosphatase subfamily of the Nudix hydrolases and tentative identification of trgB, a gene associated with tellurite resistance. J Biol Chem 274: 3231832324.
  • Fox, H.H. (1952) The chemical approach to the control of tuberculosis. Science 116: 129134.
  • Frick, D.N., and Bessman, M.J. (1995) Cloning, purification, and properties of a novel NADH pyrophosphatase-evidence for a nucleotide pyrophosphatase catalytic domain in MutT-like enzymes. J Biol Chem 270: 15291534.
  • Gagneux, S., DeRiemer, K., Van, T., Kato-Maeda, M., de Jong, B.C., Narayanan, S., et al. (2006) Variable host–pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 103: 28692873.
  • Hazbon, M.H., Brimacombe, M., Bobadilla del Valle, M., Cavatore, M., Guerrero, M.I., Varma-Basil, M., et al. (2006) Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 50: 26402649.
  • Heym, B., and Cole, S.T. (1992) Isolation and characterization of isoniazid-resistant mutants of Mycobacterium smegmatis and M. aurum. Res Microbiol 143: 721730.
  • Heym, B., Alzari, P.M., Honore, N., and Cole, S.T. (1995) Missense mutations in the catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis. Mol Microbiol 15: 235245.
  • Hirsh, A.E., Tsolaki, A.G., DeRiemer, K., Feldman, M.W., and Small, P.M. (2004) Stable association between strains of Mycobacterium tuberculosis and their human host populations. Proc Natl Acad Sci USA 101: 48714876.
  • Johnsson, K., and Schultz, P.G. (1994) Mechanistic studies of the oxidation of isoniazid by the catalase peroxidase from Mycobacterium tuberculosis. J Am Chem Soc 116: 74257426.
  • Kasărov, L.B., and Moat, A.G. (1972) Metabolism of nicotinamide adenine dinucleotide in human and bovine strains of Mycobacterium tuberculosis. J Bacteriol 110: 600603.
  • Larsen, M.H., Vilchèze, C., Kremer, L., Besra, G.S., Parsons, L., Salfinger, M., et al. (2002) Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis. Mol Microbiol 46: 453466.
  • LaVallie, E.R., DiBlasio, E.A., Kovacic, S., Grant, K.L., Schendel, P.F., and McCoy, J.M. (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Bio/Technology 11: 187193.
  • Lee, A.S., Teo, A.S., and Wong, S.Y. (2001) Novel mutations in ndh inisoniazid-resistant Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 45: 21572159.
  • Lee, S., Kriakov, J., Vilcheze, C., Dai, Z., Hatfull, G.F., and Jacobs, W.R., Jr (2004) Bxz1, a new generalized transducing phage for mycobacteria. FEMS Microbiol Lett 241: 271276.
  • Lei, B., Wei, C.J., and Tu, S.C. (2000) Action mechanism of antitubercular isoniazid. Activation by Mycobacterium tuberculosis KatG, isolation, and characterization of InhA inhibitor. J Biol Chem 275: 25202526.
  • Middlebrook, G., and Cohn, M.L. (1953) Some observations on the pathogenicity of isoniazid-resistant variants of tubercle bacilli. Science 118: 297299.
  • Miesel, L., Weisbrod, T.R., Marcinkeviciene, J.A., Bittman, R., and Jacobs, W.R., Jr (1998) NADH dehydrogenase defects confer isoniazid resistance and conditional lethality in Mycobacterium smegmatis. J Bacteriol 180: 24592467.
  • Morlock, G.P., Metchock, B., Sikes, D., Crawford, J.T., and Cooksey, R.C. (2003) ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 47: 37993805.
  • Mostowy, S., Onipede, A., Gagneux, S., Niemann, S., Kremer, K., Desmond, E.P., et al. (2004) Genomic analysis distinguishes Mycobacterium africanum. J Clin Microbiol 42: 35943599.
  • Nguyen, M., Claparols, C., Bernadou, J., and Meunier, B. (2001) A fast and efficient metal-mediated oxidation of isoniazid and identification of isoniazid-NAD(H) adducts. Chembiochem 2: 877883.
  • Nguyen, M., Quémard, A., Broussy, S., Bernadou, J., and Meunier, B. (2002) Mn(III) pyrophosphate as an efficient tool for studying the mode of action of isoniazid on the InhA protein of Mycobacterium tuberculosis. Antimicrob Agents Chemother 46: 21372144.
  • Rawat, R., Whitty, A., and Tonge, P.J. (2003) The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: adduct affinity and drug resistance. Proc Natl Acad Sci USA 100: 1388113886.
  • Rozwarski, D.A., Grant, G.A., Barton, D.H., Jacobs, W.R., Jr, and Sacchettini, J.C. (1998) Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science 279: 98102.
  • Schuck, P. (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 78: 16061619.
  • Takayama, K., Wang, L., and David, H.L. (1972) Effect of isoniazid on the in vivo mycolic acid synthesis, cell growth, and viability of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2: 2935.
  • Upton, A.M., Mushtaq, A., Victor, T.C., Sampson, S.L., Sandy, J., Smith, D.M., et al. (2001) Arylamine N-acetyltransferase of Mycobacterium tuberculosis is a polymorphic enzyme and a site of isoniazid metabolism. Mol Microbiol 42: 309317.
  • Vannelli, T.A., Dykman, A., and OrtizdeMontellano, P.R. (2002) The antituberculosis drug ethionamide is activated by a flavoprotein monooxygenase. J Biol Chem 277: 1282412829.
  • Vilchèze, C., Morbidoni, H.R., Weisbrod, T.R., Iwamoto, H., Kuo, M., Sacchettini, J.C., and Jacobs, W.R., Jr (2000) Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. J Bacteriol 182: 40594067.
  • Vilchèze, C., Weisbrod, T.R., Chen, B., Kremer, L., Hazbón, M.H., Wang, F., et al. (2005) Altered NADH/NAD+ ratio mediates coresistance to isoniazid and ethionamide in mycobacteria. Antimicrob Agents Chemother 49: 708720.
  • Vilchèze, C., Wang, F., Arai, M., Hazbon, M.H., Colangeli, R., Kremer, L., et al. (2006) Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nat Med 12: 10271029.
  • Vilchèze, C., Av-Gay, Y., Attarian, R., Liu, Z., Hazbón, M.H., Colangeli, R., et al. (2008) Mycothiol biosynthesis is essential for ethionamide susceptibility in Mycobacterium tuberculosis. Mol Microbiol 69: 13161329.
  • Vilchèze, C., Weinrick, B., Wong, K.W., Chen, B., and Jacobs, W.R., Jr (2010) NAD+ auxotrophy is bacteriocidal for the tubercle bacilli. Mol Microbiol 76: 365377.
  • Wang, F., Langley, R., Gulten, G., Dover, L.G., Besra, G.S., Jacobs, W.R., Jr, and Sacchettini, J.C. (2007) Mechanism of thioamide drug action against tuberculosis and leprosy. J Exp Med 204: 7378.
  • Wilming, M., and Johnsson, K. (1999) Spontaneous formation of the bioactive form of the tuberculosis drug isoniazid. Angew Chem Int Ed Engl 38: 25882590.
  • World Health Organization (2009) Global Tuberculosis Control. A short update to the 2009 report.
  • Xu, W., Dunn, C.A., and Bessman, M.J. (2000) Cloning and characterization of the NADH pyrophosphatases from Caenorhabditis elegans and Saccharomyces cerevisiae, members of a Nudix hydrolase subfamily. Biochem Biophys Res Commun 273: 753758.
  • Zhang, Y., Heym, B., Allen, B., Young, D., and Cole, S. (1992) The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358: 591593.