Small non-coding RNA molecules (sRNA) are key regulators participating in complex networks, which adapt metabolism in response to environmental changes. In this issue of Molecular Microbiology, and in a related paper in Proc. Natl. Acad. Sci. USA, Moreno et al. (2011) and Sonnleitner et al. (2009) report on novel sRNAs, which act as decoys to inhibit the activity of the master post-transcriptional regulatory protein Crc. Crc is a key protein involved in carbon catabolite repression that optimizes metabolism improving the adaptation of the bacteria to their diverse habitats. Crc is a novel RNA-binding protein that regulates translation of multiple target mRNAs. Two regulatory sRNAs in Pseudomonas putida mimic the natural mRNA targets of Crc and counteract the action of Crc by sequestrating the protein when catabolite repression is absent. Crc trapping by a sRNA is a mechanism reminiscent to the regulation of the repressor of secondary metabolites (RsmA) in Pseudomonas, and highlights the suitability of RNA-dependent regulation to rapidly adjust cell growth in response to environmental changes.