SEARCH

SEARCH BY CITATION

References

  • Antelmann, H., Tjalsma, H., Voigt, B., Ohlmeier, S., Bron, S., van Dijl, J.M., and Hecker, M. (2001) A proteomic view on genome-based signal peptide predictions. Genome Res 11: 14841502.
  • Bendtsen, J.D., Nielsen, H., von Heijne, G., and Brunak, S. (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340: 783795.
  • Chary, V.K., Xenopoulos, P., Eldar, A., and Piggot, P.J. (2010) Loss of compartmentalization of σE activity need not prevent formation of spores by Bacillus subtilis. J Bacteriol 192: 56165624.
  • Dean, D.R., Hoch, J.A., and Aronson, A.I. (1977) Alteration of the Bacillus subtilis glutamine synthetase results in overproduction of the enzyme. J Bacteriol 131: 981987.
  • Eldar, A., Chary, V.K., Xenopoulos, P., Fontes, M.E., Loson, O.C., Dworkin, J., et al. (2009) Partial penetrance facilitates developmental evolution in bacteria. Nature 460: 510514.
  • Grossman, A.D. (1995) Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Annu Rev Genet 29: 477508.
  • Hannoush, R.N., and Sun, J. (2010) The chemical toolbox for monitoring protein fatty acylation and prenylation. Nat Chem Biol 6: 498506.
  • Hilbert, D.W., and Piggot, P.J. (2004) Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol Mol Biol Rev 68: 234262.
  • Hofmeister, A.E., Londoño-Vallejo, A., Harry, E., Stragier, P., and Losick, R. (1995) Extracellular signal protein triggering the proteolytic activation of a developmental transcription factor in B. subtilis. Cell 83: 219226.
  • Imamura, D., Zhou, R., Feig, M., and Kroos, L. (2008) Evidence that the Bacillus subtilis SpoIIGA protein is a novel type of signal-transducing aspartic protease. J Biol Chem 283: 1528715299.
  • Karow, M.L., Glaser, P., and Piggot, P.J. (1995) Identification of a gene, spoIIR, that links the activation of σE to the transcriptional activity of σF during sporulation in Bacillus subtilis. Proc Natl Acad Sci USA 92: 20122016.
  • Khvorova, A., Chary, V.K., Hilbert, D.W., and Piggot, P.J. (2000) The chromosomal location of the Bacillus subtilis sporulation gene spoIIR is important for its function. J Bacteriol 182: 44254429.
  • Kroos, L., and Yu, Y.T. (2000) Regulation of sigma factor activity during Bacillus subtilis development. Curr Opin Microbiol 3: 553560.
  • LaBell, T.L., Trempy, J.E., and Haldenwang, W.G. (1987) Sporulation-specific sigma factor sigma 29 of Bacillus subtilis is synthesized from a precursor protein, P31. Proc Natl Acad Sci USA 84: 17841788.
  • Londoño-Vallejo, J.A. (1997) Mutational analysis of the early forespore/mother-cell signalling pathway in Bacillus subtilis. Microbiology 143: 27532761.
  • Londoño-Vallejo, J.A., and Stragier, P. (1995) Cell–cell signaling pathway activating a developmental transcription factor in Bacillus subtilis. Genes Dev 9: 503508.
  • Lopez, D., and Kolter, R. (2010) Functional microdomains in bacterial membranes. Genes Dev 24: 18931902.
  • Losick, R., and Stragier, P. (1992) Crisscross regulation of cell-type-specific gene expression during development in B. subtilis. Nature 355: 601604.
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265275.
  • Lu, D., Wormann, M.E., Zhang, X., Schneewind, O., Grundling, A., and Freemont, P.S. (2009) Structure-based mechanism of lipoteichoic acid synthesis by Staphylococcus aureus LtaS. Proc Natl Acad Sci USA 106: 15841589.
  • Martin, I., Debarbouille, M., Ferrari, E., Klier, A., and Rapoport, G. (1987) Characterization of the levanase gene of Bacillus subtilis which shows homology to yeast invertase. Mol Gen Genet 208: 177184.
  • Matsuoka, H., Hirooka, K., and Fujita, Y. (2007) Organization and function of the YsiA regulon of Bacillus subtilis involved in fatty acid degradation. J Biol Chem 282: 51805194.
  • Nicholson, W.L., and Chambliss, G.H. (1985) Isolation and characterization of a cis-acting mutation conferring catabolite repression resistance to α-amylase synthesis in Bacillus subtilis. J Bacteriol 161: 875881.
  • Nicholson, W.L., and Setlow, P. (1990) Sporulation, germination, and outgrowth. In Molecular Biological Methods for Bacillus. Harwood, C.R., and Cutting, S.M. (eds). New York: John Wiley & Sons, pp. 391450.
  • Ohmura, K., Yamazaki, H., Takeichi, Y., Nakayama, A., Otozai, K., Yamane, K., et al. (1983) Nucleotide sequence of the promoter and NH2-terminal signal peptide region of Bacillus subtilis α-amylase gene cloned in pUB110. Biochem Biophys Res Commun 112: 678683.
  • Paoletti, L., Lu, Y.J., Schujman, G.E., de Mendoza, D., and Rock, C.O. (2007) Coupling of fatty acid and phospholipid synthesis in Bacillus subtilis. J Bacteriol 189: 58165824.
  • Powers, M.E., Smith, P.A., Roberts, T.C., Fowler, B.J., King, C.C., Trauger, S.A., et al. (2011) Type I signal peptidase and protein secretion in Staphylococcus epidermidis. J Bacteriol 193: 340348.
  • Rubio, A., and Pogliano, K. (2004) Septal localization of forespore membrane proteins during engulfment in Bacillus subtilis. EMBO J 23: 16361646.
  • Rudner, D.Z., and Losick, R. (2001) Morphological coupling in development: lessons from prokaryotes. Dev Cell 1: 733742.
  • Salaun, C., Greaves, J., and Chamberlain, L.H. (2010) The intracellular dynamic of protein palmitoylation. J Cell Biol 191: 12291238.
  • Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular Cloning. A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  • Schaeffer, P., Millet, J., and Aubert, J.P. (1965) Catabolic repression of bacterial sporulation. Proc Natl Acad Sci USA 54: 704711.
  • Schujman, G.E., Grau, R., Gramajo, H.C., Ornella, L., and de Mendoza, D. (1998) De novo fatty acid synthesis is required for establishment of cell type-specific gene transcription during sporulation in Bacillus subtilis. Mol Microbiol 29: 12151224.
  • Schujman, G.E., Choi, K.H., Altabe, S., Rock, C.O., and de Mendoza, D. (2001) Response of Bacillus subtilis to cerulenin and acquisition of resistance. J Bacteriol 183: 30323040.
  • Spizizen, J. (1958) Transformation of biochemically deficient strains of Bacillus Subtilis by deoxyribonucleate. Proc Natl Acad Sci USA 44: 10721078.
  • Stachelhaus, T., Mootz, H.D., and Marahiel, M.A. (2002) Nonribosomal assembly of peptide antibiotics on modular protein templates. In Bacillus subtilis and Its Closest Relatives: From Genes to Cells. Sonenshein, A.L., Hoch, J.A., and Losick, R.M. (eds). Washington, DC: American Society for Microbiology, pp. 415434.
  • Stanley, P., Koronakis, V., and Hughes, C. (1998) Acylation of Escherichia coli hemolysin: a unique protein lipidation mechanism underlying toxin function. Microbiol Mol Biol Rev 62: 309333.
  • Sterlini, J.M., and Mandelstam, J. (1969) Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem J 113: 2937.
  • Stragier, P., and Losick, R. (1996) Molecular genetics of sporulation in Bacillus subtilis. Annu Rev Genet 30: 297341.
  • Stragier, P., Bonamy, C., and Karmazyn-Campelli, C. (1988) Processing of a sporulation sigma factor in Bacillus subtilis: how morphological structure could control gene expression. Cell 52: 697704.
  • Yang, J., Brown, M.S., Liang, G., Grishin, N.V., and Goldstein, J.L. (2008) Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell 132: 387396.