Most Gram-negative bacteria have an O antigen, a polysaccharide with many repeats of a short oligosaccharide that is a part of the lipopolysaccharide, the major lipid in the outer leaflet of the outer membrane. Lipopolysaccharide is variable with 46 forms in Salmonella enterica that underpin the serotyping scheme. Repeat units are assembled on a lipid carrier that is embedded in the cell membrane, and are then translocated by the Wzx translocase from the cytoplasmic face to the outer face of the cell membrane, followed by polymerization. The O antigen is then incorporated into lipopolysaccharide and exported to the outer membrane. The Wzx translocase is widely thought to be specific only for the first sugar of the repeat unit, despite extensive variation in both O antigens and Wzx translocases. However, we found for S. enterica groups B, D2 and E that Wzx translocation exhibits significant specificity for the repeat-unit structure, as variants with single sugar differences are translocated with lower efficiency and little long-chain O antigen is produced. It appears that Wzx translocases are specific for their O antigen for normal levels of translocation.