SEARCH

SEARCH BY CITATION

References

  • Aharonowitz, Y. (1980) Nitrogen metabolite regulation of antibiotic biosynthesis. Annu Rev Microbiol 34: 209233.
  • Arias, P., Fernandez-Moreno, M.A., and Malpartida, F. (1999) Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. J Bacteriol 181: 69586968.
  • Bentley, S.D., Chater, K.F., Cerdeno-Tarraga, A.M., Challis, G.L., Thomson, N.R., James, K.D., et al. (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141147.
  • Challis, G.L., and Hopwood, D.A. (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci USA 100: 1455514561.
  • Chang, H.M., Chen, M.Y., Shieh, Y.T., Bibb, M.J., and Chen, C.W. (1996) The cutRS signal transduction system of Streptomyces lividans represses the biosynthesis of the polyketide antibiotic actinorhodin. Mol Microbiol 21: 10751085.
  • Chang, M., and Jaehning, J.A. (1997) A multiplicity of mediators: alternative forms of transcription complexes communicate with transcriptional regulators. Nucleic Acids Res 25: 48614865.
  • Chen, L., Chen, J., Jiang, Y., Zhang, W., Jiang, W., and Lu, Y. (2009) Transcriptomics analyses reveal global roles of the regulator AveI in Streptomyces avermitilis. FEMS Microbiol Lett 298: 199207.
  • Datsenko, K.A., and Wanner, B.L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 66406645.
  • Ghorbel, S., Kormanec, J., Artus, A., and Virolle, M.-J. (2006) Transcriptional studies and regulatory interactions between the phoR-phoP operon and the phoU, mtpA, and ppk genes of Streptomyces lividans TK24. J Bacteriol 188: 677686.
  • Gottelt, M., Kol, S., Gomez-Escribano, J.P., Bibb, M., and Takano, E. (2010) Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2). Microbiology 156: 23432353.
  • Goyal, R., Das, A.K., Singh, R., Singh, P.K., Korpole, S., and Sarkar, D. (2011) Phosphorylation of PhoP protein plays direct regulatory role in lipid biosynthesis of Mycobacterium tuberculosis. J Biol Chem 286: 4519745208.
  • Gramajo, H.C., Takano, E., and Bibb, M.J. (1993) Stationary-phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated. Mol Microbiol 7: 837845.
  • Guo, J., Zhao, J., Li, L., Chen, Z., Wen, Y., and Li, J. (2010) The pathway-specific regulator AveR from Streptomyces avermitilis positively regulates avermectin production while it negatively affects oligomycin biosynthesis. Mol Genet Genomics 283: 123133.
  • Gust, B., Challis, G.L., Fowler, K., Kieser, T., and Chater, K.F. (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100: 15411546.
  • Hakenbeck, R., and Stock, J.B. (1996) Analysis of two-component signal transduction systems involved in transcriptional regulation. Methods Enzymol 273: 281300.
  • Herrmann, S., Siegl, T., Luzhetska, M., Petzke, L., Jilg, C., Welle, E., et al. (2012) Site-specific recombination strategies for engineering actinomycete genomes. Appl Environ Microbiol 78: 18041812.
  • Hiard, S., Marée, R., Colson, S., Hoskisson, P.A., Titgemeyer, F., van Wezel, G.P., et al. (2007) PREDetector: a new tool to identify regulatory elements in bacterial genomes. Biochem Biophys Res Commun 357: 861864.
  • Hong, H.J., Hutchings, M.I., Neu, J.M., Wright, G.D., Paget, M.S.B., and Buttner, M.J. (2004) Characterization of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a novel gene (vanK) required for drug resistance. Mol Microbiol 52: 11071121.
  • Hopwood, D.A., Bibb, M.J., Chater, K.F., Kieser, T., Bruton, C.J., and Kieser, H. (1985) Genetic Manipulation of Streptomyces: A Laboratory Manual. Norwich: The John Innes Foundation.
  • Ishizuka, H., Horinouchi, S., Kieser, H.M., Hopwood, D.A., and Beppu, T. (1992) A putative two-component regulatory system involved in secondary metabolism in Streptomyces spp. J Bacteriol 174: 75857594.
  • Jones, R.L., 3rd, Jaskula, J.C., and Janssen, G.R. (1992) In vivo translational start site selection on leaderless mRNA transcribed from the Streptomyces fradiae aph gene. J Bacteriol 174: 47534760.
  • Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. (2000) Practical Streptomyces Genetics. Norwich: The John Innes Foundation.
  • Kitani, S., Ikeda, H., Sakamoto, T., Noguchi, S., and Nihira, T. (2009) Characterization of a regulatory gene, aveR, for the biosynthesis of avermectin in Streptomyces avermitilis. Appl Microbiol Biotechnol 82: 10891096.
  • Lu, Y., Wang, W., Shu, D., Zhang, W., Chen, L., Qin, Z., et al. (2007) Characterization of a novel two-component regulatory system involved in the regulation of both actinorhodin and a type I polyketide in Streptomyces coelicolor. Appl Microbiol Biotechnol 77: 625635.
  • Lu, Y., He, J., Zhu, H., Yu, Z., Wang, R., Chen, Y., et al. (2011) An orphan histidine kinase, OhkA, regulates both secondary metabolism and morphological differentiation in Streptomyces coelicolor. J Bacteriol 193: 30203032.
  • MacNeil, D.J., Gewain, K.M., Ruby, C.L., Dezeny, G., Gibbons, P.H., and MacNeil, T. (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111: 6168.
  • McCleary, W.R., Stock, J.B., and Ninfa, A.J. (1993) Is acetyl phosphate a global signal in Escherichia coli? J Bacteriol 175: 27932798.
  • McKenzie, N.L., and Nodwell, J.R. (2007) Phosphorylated AbsA2 negatively regulates antibiotic production in Streptomyces coelicolor through interactions with pathway-specific regulatory gene promoters. J Bacteriol 189: 52845292.
  • Martín, J.F., and Liras, P. (2010) Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces. Curr Opin Microbiol 13: 263273.
  • Martín, J.F., Sola-Landa, A., Santos-Beneit, F., Fernández-Martínez, L.T., Prieto, C., and Rodríguez-García, A. (2011) Cross-talk of global nutritional regulators in the control of primary and secondary metabolism in Streptomyces. Microbiol Biotechnol 4: 165174.
  • Noh, J.H., Kim, S.H., Lee, H.N., Lee, S., and Kim, E.S. (2010) Isolation and genetic manipulation of the antibiotic down-regulatory gene, wblA ortholog for doxorubicin-producing Streptomyces strain improvement. Appl Microbiol Biotechnol 86: 11451153.
  • Ōmura, S., Ikeda, H., Ishikawa, J., Hanamoto, A., Takahashi, C., Shinose, M., et al. (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci USA 98: 1221512220.
  • Ou, X., Zhang, B., Zhang, L., Zhao, G., and Ding, X. (2009) Characterization of rrdA, a TetR family protein gene involved in the regulation of secondary metabolism in Streptomyces coelicolor. Appl Environ Microbiol 75: 21582165.
  • Park, D., and Forst, S. (2006) Co-regulation of motility, exoenzyme and antibiotic production by the EnvZ-OmpR-FlhDC-FliA pathway in Xenorhabdus nematophila. Mol Microbiol 61: 13971412.
  • Park, D., Ciezki, K., van der Hoeven, R., Singh, S., Reimer, D., Bode, H.B., and Forst, S. (2009a) Genetic analysis of xenocoumacin antibiotic production in the mutualistic bacterium Xenorhabdus nematophila. Mol Microbiol 73: 938949.
  • Park, S.S., Yang, Y.H., Song, E., Kim, E.J., Kim, W.S., Sohng, J.K., et al. (2009b) Mass spectrometric screening of transcriptional regulators involved in antibiotic biosynthesis in Streptomyces coelicolor A3(2). J Ind Microbiol Biotechnol 36: 10731083.
  • Rigali, S., Titgemeyer, F., Barends, S., Mulder, S., Thomae, A.W., Hopwood, D.A., and van Wezel, G.P. (2008) Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 9: 670675.
  • Rodionov, D.A. (2007) Comparative genomic reconstruction of transcriptional regulatory networks in bacteria. Chem Rev 107: 34673497.
  • Ryding, N.J., Anderson, T.B., and Champness, W.C. (2002) Regulation of the Streptomyces coelicolor calcium-dependent antibiotic by absA, encoding a cluster-linked two-component system. J Bacteriol 184: 794805.
  • Sambrook, J., Fritsch, T., and Maniatis, E.F. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • Santos-Beneit, F., Rodríguez-García, A., Sola-Landa, A., and Martín, J.F. (2009) Cross-talk between two global regulators in Streptomyces: PhoP and AfsR interact in the control of afsS, pstS and phoRP transcription. Mol Microbiol 72: 5368.
  • Seubert, W., Lamberts, I., Kramer, R., and Ohly, B. (1968) On the mechanism of malonyl-CoA-independent fatty acid synthesis: I. The mechanism of elongation of long-chain fatty acids by acetyl-CoA. Biochim Biophys Acta Lipids Lipid Metab 164: 498517.
  • Shu, D., Chen, L., Wang, W., Yu, Z., Ren, C., Zhang, W., et al. (2009) afsQ1-Q2-sigQ is a pleiotropic but conditionally required signal transduction system for both secondary metabolism and morphological development in Streptomyces coelicolor. Appl Microbiol Biotechnol 81: 11491160.
  • Simon, I., Barnett, J., Hannett, N., Harbison, C.T., Rinaldi, N.J., Volkert, T.L., et al. (2001) Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106: 697708.
  • Sola-Landa, A., Moura, R.S., and Martín, J.F. (2003) The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci USA 100: 61336138.
  • Sola-Landa, A., Rodríguez-García, A., Franco-Domínguez, E., and Martín, J.F. (2005) Binding of PhoP to promoters of phosphate-regulated genes in Streptomyces coelicolor: identification of PHO boxes. Mol Microbiol 56: 13731385.
  • Strohl, W.R. (1992) Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res 20: 961974.
  • Stutzman-Engwall, K., Conlon, S., Fedechko, R., Kaczmarek, F., McArthur, H., Krebber, A., et al. (2003) Engineering the aveC gene to enhance the ratio of doramectin to its CHC-B2 analogue produced in Streptomyces avermitilis. Biotechnol Bioeng 82: 359369.
  • Tahlan, K., Ahn, S.K., Sing, A., Bodnaruk, T.D., Willems, A.R., Davidson, A.R., and Nodwell, J.R. (2007) Initiation of actinorhodin export in Streptomyces coelicolor. Mol Microbiol 63: 951961.
  • Takano, E., Gramajo, H.C., Strauch, E., Andres, N., White, J., and Bibb, M.J. (1992) Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Mol Microbiol 6: 27972804.
  • Takano, E., Kinoshita, H., Mersinias, V., Bucca, G., Hotchkiss, G., Nihira, T., et al. (2005) A bacterial hormone (the SCB1) directly controls the expression of a pathway-specific regulatory gene in the cryptic type I polyketide biosynthetic gene cluster of Streptomyces coelicolor. Mol Microbiol 56: 465479.
  • Tiffert, Y., Supra, P., Wurm, R., Wohlleben, W., Wagner, R., and Reuther, J. (2008) The Streptomyces coelicolor GlnR regulon: identification of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in actinomycetes. Mol Microbiol 67: 861880.
  • Uguru, G.C., Stephens, K.E., Stead, J.A., Towle, J.E., Baumberg, S., and McDowall, K.J. (2005) Transcriptional activation of the pathway-specific regulator of the actinorhodin biosynthetic genes in Streptomyces coelicolor. Mol Microbiol 58: 131150.
  • Wang, J., Wang, W., Wang, L., Zhang, G., Fan, K., Tan, H., and Yang, K. (2011) A novel role of ‘pseudo’γ-butyrolactone receptors in controlling γ-butyrolactone biosynthesis in Streptomyces. Mol Microbiol 82: 236250.
  • Wang, L., Tian, X., Wang, J., Yang, H., Fan, K., Xu, G., et al. (2009) Autoregulation of antibiotic biosynthesis by binding of the end product to an atypical response regulator. Proc Natl Acad Sci USA 106: 86178622.
  • van Wezel, G.P., and McDowall, K.J. (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28: 13111333.
  • White, J., and Bibb, M. (1997) bldA dependence of undecylprodigiosin production in Streptomyces coelicolor A3(2) involves a pathway-specific regulatory cascade. J Bacteriol 179: 627633.
  • Wietzorrek, A., and Bibb, M. (1997) A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol Microbiol 25: 11811184.
  • Wolfe, A.J. (2005) The acetate switch. Microbiol Mol Biol Rev 69: 1250.
  • Xia, H., Huang, J., Hu, M., Shen, M., Xie, P., Zhang, L., and Wang, H. (2009) Construction of an ordered cosmid library of S. avermitilis for genetic modification of the industrial strains. Chin J Antibiot 34: 340343.
  • Xu, G., Wang, J., Wang, L., Tian, X., Yang, H., Fan, K., et al. (2010) ‘Pseudo’γ-butyrolactone receptors respond to antibiotic signals to coordinate antibiotic biosynthesis. J Biol Chem 285: 2744027448.
  • Yang, H., Wang, L., Xie, Z., Tian, Y., Liu, G., and Tan, H. (2007) The tyrosine degradation gene hppD is transcriptionally activated by HpdA and repressed by HpdR in Streptomyces coelicolor, while hpdA is negatively autoregulated and repressed by HpdR. Mol Microbiol 65: 10641077.
  • Yepes, A., Rico, S., Rodríguez-García, A., Santamaría, R.I., and Díaz, M. (2011) Novel two-component systems implied in antibiotic production in Streptomyces coelicolor. PLoS ONE 6: e19980.