SEARCH

SEARCH BY CITATION

References

  • Alfredsson, G., Baldursson, S., and Krjstjansson, J.K. (1985) Nutritional diversity among Thermus spp. isolated from Icelandic hot spring. Syst Appl Microbiol 6: 308311.
  • Almeida Da Silva, P.E., and Palomino, J.C. (2011) Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother 66: 14171430.
  • Andersen, T.E., Porse, B.T., and Kirpekar, F. (2004) A novel partial modification at C2501 in Escherichia coli 23S ribosomal RNA. RNA 10: 907913.
  • Aravind, L., and Koonin, E.V. (1999) Novel predicted RNA-binding domains associated with the translation machinery. J Mol Evol 48: 291302.
  • Arenas, N.E., Salazar, L.M., Soto, C.Y., Vizcaino, C., Patarroyo, M.E., Patarroyo, M.A., and Gomez, A. (2011) Molecular modeling and in silico characterization of Mycobacterium tuberculosis TlyA: possible misannotation of this tubercle bacilli-hemolysin. BMC Struct Biol 11: 16.
  • Bulkley, D., Innis, C.A., Blaha, G., and Steitz, T.A. (2010) Revisiting the structures of several antibiotics bound to the bacterial ribosome. Proc Natl Acad Sci USA 107: 1715817163.
  • Bulkley, D., Johnson, F., and Steitz, T.A. (2012) The antibiotic thermorubin inhibits protein synthesis by binding to inter-subunit bridge B2a of the ribosome. J Mol Biol 416: 571578.
  • Chow, C.S., Lamichhane, T.N., and Mahto, S.K. (2007) Expanding the nucleotide repertoire of the ribosome with post-transcriptional modifications. ACS Chem Biol 2: 610619.
  • Conn, G.L., Savic, M., and Macmaster, R. (2009) Antibiotic resistance in bacteria caused through modification of nucleosides in 16S ribosomal RNA. In DNA and RNA Modification Enzymes: Structure, Mechanism, Function and Evolution. Grosjean, H. (ed.). Austin, TX: Landes BioScience, pp. 525536.
  • Demirci, H., Murphy, F., Belardinelli, R., Kelley, A.C., Ramakrishnan, V., Gregory, S.T., et al. (2010) Modification of 16S ribosomal RNA by the KsgA methyltransferase restructures the 30S subunit to optimize ribosome function. RNA 16: 23192324.
  • Dunkle, J.A., Wang, L., Feldman, M.B., Pulk, A., Chen, V.B., Kapral, G.J., et al. (2011) Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 332: 981984.
  • Ermolenko, D.N., Spiegel, P.C., Majumdar, Z.K., Hickerson, R.P., Clegg, R.M., and Noller, H.F. (2007) The antibiotic viomycin traps the ribosome in an intermediate state of translocation. Nat Struct Mol Biol 14: 493497.
  • Feder, M., Pas, J., Wyrwicz, L.S., and Bujnicki, J.M. (2003) Molecular phylogenetics of the RrmJ/fibrillarin superfamily of ribose 2′-O-methyltransferases. Gene 302: 129138.
  • Gandhimathi, A., Nair, A.G., and Sowdhamini, R. (2012) PASS2 version 4: an update to the database of structure-based sequence alignments of structural domain superfamilies. Nucleic Acids Res 40: D531D534.
  • Gonzalez de Valdivia, E.I., and Isaksson, L.A. (2004) A codon window in mRNA downstream of the initiation codon where NGG codons give strongly reduced gene expression in Escherichia coli. Nucleic Acids Res 32: 51985205.
  • Grosjean, H. (2009) DNA and RNA Modification Enzymes: Structure, Mechanism, Function and Evolution. Austin, TX: Landes Biosciences.
  • Guymon, R., Pomerantz, S.C., Crain, P.F., and McCloskey, J.A. (2006) Influence of phylogeny on posttranscriptional modification of rRNA in thermophilic prokaryotes: the complete modification map of 16S rRNA of Thermus thermophilus. Biochemistry 45: 48884899.
  • Hansen, L.H., Kirpekar, F., and Douthwaite, S. (2001) Recognition of nucleotide G745 in 23S ribosomal RNA by the RrmA methyltransferase. J Mol Biol 310: 10011010.
  • Helser, T.L., Davies, J.E., and Dahlberg, J.E. (1971) Change in methylation of 16S ribosomal RNA associated with mutation to kasugamycin resistance in Escherichia coli. Nat New Biol 233: 1214.
  • Johansen, S.K., Maus, C.E., Plikaytis, B.B., and Douthwaite, S. (2006) Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2′-O-methylations in 16S and 23S rRNAs. Mol Cell 23: 173182.
  • Kirpekar, F., Douthwaite, S., and Roepstorff, P. (2000) Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry. RNA 6: 296306.
  • Lapeyre, B. (2005) Conserved ribosomal RNA modifications and their putative roles in ribosome biogenesis and translation. In Fine-Tuning of RNA Functions by Modification and Editing. Grosjean, H. (ed.). New York, NY: Springer Verlag, pp. 263284.
  • Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 29472948.
  • Long, K.S., and Vester, B. (2009) Antibiotics resistance in bacteria caused by modified nucleosides in 23S ribosomal RNA. In DNA and RNA Modification Enzymes: Structure, Mechanism, Function and Evolution. Grosjean, H. (ed.). Austin, TX: Landes BioScience, pp. 537549.
  • McCusker, K.P., and Fujimori, D.G. (2012) The chemistry of peptidyltransferase center-targeted antibiotics: enzymatic resistance and approaches to countering resistance. ACS Chem Biol 7: 6472.
  • Maden, B.E., Corbett, M.E., Heeney, P.A., Pugh, K., and Ajuh, P.M. (1995) Classical and novel approaches to the detection and localization of the numerous modified nucleotides in eukaryotic ribosomal RNA. Biochimie 77: 2229.
  • Martin, J.L., and McMillan, F.M. (2002) SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol 12: 783793.
  • Maus, C.E., Plikaytis, B.B., and Shinnick, T.M. (2005a) Mutation of tlyA confers capreomycin resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 49: 571577.
  • Maus, C.E., Plikaytis, B.B., and Shinnick, T.M. (2005b) Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis. Antimicrob Agents Chemother 49: 31923197.
  • Mengel-Jorgensen, J., Jensen, S.S., Rasmussen, A., Poehlsgaard, J., Iversen, J.J., and Kirpekar, F. (2006) Modifications in Thermus thermophilus 23S ribosomal RNA are centered in regions of RNA-RNA contact. J Biol Chem 281: 2210822117.
  • Modolell, J., and Vazquez, D. (1977) The inhibition of ribosomal translocation by viomycin. Eur J Biochem 81: 491497.
  • Monshupanee, T., Gregory, S.T., Douthwaite, S., Chungjatupornchai, W., and Dahlberg, A.E. (2008) Mutations in conserved helix 69 of 23S rRNA of Thermus thermophilus that affect capreomycin resistance but not posttranscriptional modifications. J Bacteriol 190: 77547761.
  • Okamoto, S., Tamaru, A., Nakajima, C., Nishimura, K., Tanaka, Y., Tokuyama, S., et al. (2007) Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol Microbiol 63: 10961106.
  • Poehlsgaard, J., and Douthwaite, S. (2005) The bacterial ribosome as a target for antibiotics. Nat Rev Microbiol 3: 870881.
  • Purta, E., O'Connor, M., Bujnicki, J.M., and Douthwaite, S. (2009) YgdE is the 2′-O-ribose methyltransferase RlmM specific for nucleotide C2498 in bacterial 23S rRNA. Mol Microbiol 72: 11471158.
  • Sambrook, J., and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Press.
  • Schlünzen, F., Tocilj, A., Zarivach, R., Harms, J., Gluehmann, M., Janell, D., et al. (2000) Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell 102: 615623.
  • Schlünzen, F., Harms, J.M., Franceschi, F., Hansen, H.A., Bartels, H., Zarivach, R., and Yonath, A. (2003) Structural basis for the antibiotic activity of ketolides and azalides. Structure 11: 329338.
  • Selmer, M., Dunham, C.M., Murphy, F.V., Weixlbaumer, A., Petry, S., Kelley, A.C., et al. (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313: 19351942.
  • Stanley, R.E., Blaha, G., Grodzicki, R.L., Strickler, M.D., and Steitz, T.A. (2010) The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Nat Struct Mol Biol 17: 289293.
  • Stern, S., Moazed, D., and Noller, H.F. (1988) Structural analysis of RNA using chemical and enzymatic probing monitored by primer extension. Methods Enzymol 164: 481489.
  • Tu, D., Blaha, G., Moore, P.B., and Steitz, T.A. (2005) Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121: 257270.
  • Wimberly, B.T., Brodersen, D.E., Clemons, W.M.J., Morgan-Warren, R.J., Carter, A.P., Vonrhein, C., et al. (2000) Structure of the 30S ribosomal subunit. Nature 407: 327339.
  • Woodson, S.A. (2008) RNA folding and ribosome assembly. Curr Opin Chem Biol 12: 667673.
  • Yamada, T., Mizugichi, Y., Nierhaus, K.H., and Wittmann, H.G. (1978) Resistance to viomycin conferred by RNA of either ribosomal subunit. Nature 275: 460461.
  • Yusupov, M.M., Yusupova, G.Z., Baucom, A., Lieberman, K., Earnest, T.N., Cate, J.H., and Noller, H.F. (2001) Crystal structure of the ribosome at 5.5 Å resolution. Science 292: 883896.
  • Zhang, Y., and Yew, W.W. (2009) Mechanisms of drug resistance in Mycobacterium tuberculosis. Int J Tuberc Lung Dis 13: 13201330.