SEARCH

SEARCH BY CITATION

Keywords:

  • accretion, accretion discs;
  • radiative transfer;
  • stars: formation;
  • ISM: jets and outflows;
  • infrared: stars

ABSTRACT

In order to investigate whether massive stars form similarly to their low-mass counterparts, we have used the standard envelope plus disc geometry successfully applied to low-mass protostars to model the near-IR to submillimetre spectral energy distribution (SED) and several mid-IR images of the embedded massive star IRAS 20126+4104. We have used a Monte Carlo radiative transfer dust code to model the continuum absorption, emission and scattering through two azimuthally symmetric dust geometries, the first consisting of a rotationally flattened envelope with outflow cavities, and the second which also includes a flared accretion disc. Our results show that the envelope plus disc model reproduces the observed SED and images more accurately than the model without a disc, although the latter model more closely reproduces the morphology of the mid-IR emission within a radius of 1.1 arcsec or ∼1800 au. We have put forward several possible causes of this discontinuity, including inner truncation of the disc due to stellar irradiation or precession of the outflow cavity. Our best-fitting envelope plus disc model has a disc radius of 9200 au. We find that it is unlikely that the outer regions of such a disc would be in hydrostatic or centrifugal equilibrium, however we calculate that the temperatures within the disc would keep it stable to fragmentation.