Evolution of growing black holes in axisymmetric galaxy cores

Authors

  • J. Fiestas,

    Corresponding author
    1. Zentrum für Astronomie der Universität Heidelberg, Astronomisches Rechen-Institut, Mönchhofstraße 12–14, D-69120 Heidelberg, Germany
    2. National Astronomical Observatories of China, Chinese Academy of Sciences NAOC/CAS, 20A Datun Rd., Chaoyang District, Beijing 100012, China
      E-mail: fiestas@ari.uni-heidelberg.de
    Search for more papers by this author
  • O. Porth,

    1. Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
    Search for more papers by this author
  • P. Berczik,

    1. Zentrum für Astronomie der Universität Heidelberg, Astronomisches Rechen-Institut, Mönchhofstraße 12–14, D-69120 Heidelberg, Germany
    2. National Astronomical Observatories of China, Chinese Academy of Sciences NAOC/CAS, 20A Datun Rd., Chaoyang District, Beijing 100012, China
    3. Main Astronomical Observatory, National Academy of Sciences of Ukraine, MAO/NASU, 27 Akademika Zabolotnoho St. 03680 Kyiv, Ukraine
    Search for more papers by this author
  • R. Spurzem

    Corresponding author
    1. Zentrum für Astronomie der Universität Heidelberg, Astronomisches Rechen-Institut, Mönchhofstraße 12–14, D-69120 Heidelberg, Germany
    2. National Astronomical Observatories of China, Chinese Academy of Sciences NAOC/CAS, 20A Datun Rd., Chaoyang District, Beijing 100012, China
    3. The Kavli Institute for Astronomy and Astrophysics at Peking University, Beijing 100871, China
      E-mail: fiestas@ari.uni-heidelberg.de
    Search for more papers by this author

E-mail: fiestas@ari.uni-heidelberg.de

ABSTRACT

N-body realizations of axisymmetric collisional galaxy cores (e.g. M32, M33, NGC 205, Milky Way) with embedded growing black holes are presented. Stars which approach the disruption sphere are disrupted and accreted to the black hole. We measure the zone of influence of the black hole and disruption rates in relaxation time-scales. We show that secular gravitational instabilities dominate the initial core dynamics, while the black hole is small and growing due to the consumption of stars. Later, the black hole potential dominates the core, and the loss cone theory can be applied. Our simulations show that central rotation in galaxies cannot be neglected for relaxed systems, and compare and discuss our results with the standard theory of spherically symmetric systems.

Ancillary