Get access

Spherically averaging ellipsoidal galaxy clusters in X-ray and Sunyaev–Zel’dovich studies – I. Analytical relations

Authors

  • David A. Buote,

    Corresponding author
    1. Department of Physics and Astronomy, University of California, Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697-4575, USA
      E-mail: buote@uci.edu
    Search for more papers by this author
  • Philip J. Humphrey

    1. Department of Physics and Astronomy, University of California, Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697-4575, USA
    Search for more papers by this author

E-mail: buote@uci.edu

ABSTRACT

This is the first of two papers investigating the deprojection and spherical averaging of ellipsoidal galaxy clusters. We specifically consider applications to hydrostatic X-ray and Sunyaev–Zel’dovich (SZ) studies, though many of the results also apply to isotropic dispersion-supported stellar dynamical systems. Here we present analytical formulae for galaxy clusters described by a gravitational potential that is a triaxial ellipsoid of constant shape and orientation. For this model type we show that the mass bias due to spherically averaging X-ray observations is independent of the temperature profile, and for the special case of a scale-free logarithmic potential, there is exactly zero mass bias for any shape, orientation and temperature profile. The ratio of spherically averaged intracluster medium (ICM) pressures obtained from SZ and X-ray measurements depends only on the ICM intrinsic shape, projection orientation and H0, which provides another illustration of how cluster geometry can be recovered through a combination of X-ray and SZ measurements. We also demonstrate that YSZ and YX have different biases owing to spherical averaging, which leads to an offset in the spherically averaged inline image relation. A potentially useful application of the analytical formulae presented is to assess the error range of an observable (e.g. mass, YSZ) accounting for deviations from assumed spherical symmetry, without having to perform the ellipsoidal deprojection explicitly. Finally, for dedicated ellipsoidal studies, we also generalize the spherical onion peeling method to the triaxial case for a given shape and orientation.

Get access to the full text of this article

Ancillary