Non-variable TeV emission from the extended jet of a blazar in the stochastic acceleration scenario: the case of the hard TeV emission of 1ES 1101–232




The detections of X-ray emission from the kiloparsec-scale jets of blazars and radio galaxies could imply the existence of high-energy electrons in these extended jets, and these electrons could produce high-energy emission through the inverse Compton (IC) process. In this paper, we study the non-variable hard TeV emission from a blazar. The multiband emission consists of two components: (i) the traditional synchrotron self-Compton (SSC) emission from the inner jet; (ii) the emission produced via SSC and IC scattering of cosmic microwave background (CMB) photons (IC/CMB) and extragalactic background light (EBL) photons by relativistic electrons in the extended jet under the stochastic acceleration scenario. Such a model is applied to 1ES 1101–232. The results indicate the following. (i) The non-variable hard TeV emission of 1ES 1101–232, which is dominated by IC/CMB emission from the extended jet, can be reproduced well by using three characteristic values of the Doppler factor (δD = 5, 10 and 15) for the TeV-emitting region in the extended jet. (ii) In the cases of δD = 15 and 10, the physical parameters can achieve equipartition (or quasi-equipartition) between the relativistic electrons and the magnetic field. In contrast, the physical parameters largely deviate from equipartition for the case of δD = 5. Therefore, we conclude that the TeV emission region of 1ES 1101–232 in the extended jet should be moderately or highly beamed.