Get access

On measuring the absolute scale of baryon acoustic oscillations




The baryon acoustic oscillation (BAO) feature in the distribution of galaxies provides a fundamental standard ruler which is widely used to constrain cosmological parameters. In most analyses, the comoving length of the ruler is inferred from a combination of cosmic microwave background (CMB) observations and theory. However, this inferred length may be biased by various non-standard effects in early universe physics; this can lead to biased inferences of cosmological parameters such as H0, Ωm and w, so it would be valuable to measure the absolute BAO length by combining a galaxy redshift survey and a suitable direct low-z distance measurement. One obstacle is that low-redshift BAO surveys mainly constrain the ratio rS/DV(z), where DV is a dilation scale which is not directly observable by standard candles. Here, we find a new approximation inline image which connects DV to the standard luminosity distance DL at a somewhat higher redshift; this is shown to be very accurate (relative error <0.2 per cent) for all Wilkinson Microwave Anisotropy Probe compatible Friedmann models at z < 0.4, with very weak dependence on cosmological parameters H0, Ωm, Ωk, w. This provides a route to measure the absolute BAO length using only observations at z ≲ 0.3, including Type Ia supernovae, and potentially future H0-free physical distance indicators such as gravitational lenses or gravitational wave standard sirens. This would provide a zero-parameter check of the standard cosmology at 103z ≲ 105, and can constrain the number of relativistic species Neff with fewer degeneracies than the CMB.

Get access to the full text of this article