SEARCH

SEARCH BY CITATION

References

  • 1
    Gabella G, Trigg P. Size of neurons and glial cells in the enteric ganglia of mice, guinea-pigs, rabbits and sheep. J Neurocytol 1984; 13: 4971.
  • 2
    Parr EJ, Sharkey KA. The use of constitutive nuclear oncoproteins to count neurons in the enteric nervous system of the guinea pig. Cell Tissue Res 1994; 277: 32531.
  • 3
    Young HM, Furness JB, Sewell P, Burcher EF, Kandiah CJ. Total numbers of neurons in myenteric ganglia of the guinea-pig small intestine. Cell Tissue Res 1993; 272: 197200.
  • 4
    Gabella G. The number of neurons in the small intestine of mice, guinea-pigs and sheep. Neuroscience 1987; 22: 73752.
  • 5
    Furness JB, Trussell DC, Pompolo S, Bornstein JC, Smith TK. Calbindin neurons of the guinea-pig small intestine: quantitative analysis of their numbers and projections. Cell Tissue Res 1990; 260: 26172.
  • 6
    Bornstein JC, Furness JB, Kunze WA. Electrophysiological characterization of myenteric neurons: how do classification schemes relate? J Auton Nerv Syst 1994; 48: 115.
  • 7
    Costa M, Brookes SJ, Steele PA, Gibbins I, Burcher E, Kandiah CJ. Neurochemical classification of myenteric neurons in the guinea-pig ileum. Neuroscience 1996; 75: 94967.
  • 8
    Brookes SJ. Classes of enteric nerve cells in the guinea-pig small intestine. Anat Rec 2001; 262: 5870.
  • 9
    Brookes SJ, Steele PA, Costa M. Calretinin immunoreactivity in cholinergic motor neurones, interneurones and vasomotor neurones in the guinea-pig small intestine. Cell Tissue Res 1991; 263: 47181.
  • 10
    Brookes SJ, Meedeniya AC, Jobling P, Costa M. Orally projecting interneurones in the guinea-pig small intestine. J Physiol 1997; 505: 47391.
  • 11
    Brookes SJ, Song ZM, Steele PA, Costa M. Identification of motor neurons to the longitudinal muscle of the guinea pig ileum. Gastroenterology 1992; 103: 96173.
  • 12
    Wade PR. Aging and neural control of the GI tract. I. Age-related changes in the enteric nervous system. Am J Physiol Gastrointest Liver Physiol 2002; 283: G48995.
  • 13
    Costa M, Furness JB, Gibbins IL. Chemical coding of enteric neurons. Prog Brain Res 1986; 68: 21739.
  • 14
    Grube D. Immunoreactivities of gastrin (G-) cells. II. Non-specific binding of immunoglobulins to G-cells by ionic interactions. Histochemistry 1980; 66: 14967.
  • 15
    Gabella G. On the plasticity of form and structure of enteric ganglia. J Auton Nerv Syst 1990; 30 (Suppl): S5966.
  • 16
    Furness JB, Costa M. The Enteric Nervous System. Edinburgh, London, Melbourne, New York: Churchill Livingston, 1987.
  • 17
    Karaosmanoglu T, Aygun B, Wade PR, Gershon MD. Regional differences in the number of neurons in the myenteric plexus of the guinea pig small intestine and colon: an evaluation of markers used to count neurons. Anat Rec 1996; 244: 47080.
  • 18
    Wilson AJ, Furness JB, Costa M. The fine structure of the submucous plexus of the guinea-pig ileum. I. The ganglia, neurons, Schwann cells and neuropil. J Neurocytol 1981; 10: 75984.
  • 19
    Takaki M, Wood JD, Gershon MD. Heterogeneity of ganglia of the guinea pig myenteric plexus: an in vitro study of the origin of terminals within single ganglia using a covalently bound fluorescent retrograde tracer. J Comp Neurol 1985; 235: 488502.
  • 20
    Lin Z, Gao N, Hu HZ et al. Immunoreactivity of Hu proteins facilitates identification of myenteric neurones in guinea-pig small intestine. Neurogastroenterol Motil 2002; 14: 197204.
  • 21
    Tafuri WL. Auerbach's plexus in the guinea-pig. I. A quantitative study of the ganglia and nerve cells in the ileum, caecum and colon. Acta Anat (Basel) 1957; 31: 52230.
  • 22
    Gabella G. Fall in the number of myenteric neurons in aging guinea pigs. Gastroenterology 1989; 96: 148793.
  • 23
    Young HM, Bergner AJ, Anderson RB, Newgreen DF, Whitington PF. Dynamics of neuronal crest cell migration in the embryonic mouse gut. Little-Brain Big-Brain, Meeting VIII 2003; 23.
  • 24
    Young HM, Newgreen D. Enteric neural crest-derived cells: origin, identification, migration, and differentiation. Anat Rec 2001; 262: 115.
  • 25
    de Souza RR, Moratelli HB, Borges N, Liberti EA. Age-induced nerve cell loss in the myenteric plexus of the small intestine in man. Gerontology 1993; 39: 1838.
  • 26
    Gomes OA, de Souza RR, Liberti EA. A preliminary investigation of the effects of aging on the nerve cell number in the myenteric ganglia of the human colon. Gerontology 1997; 43: 2107.
  • 27
    Pfannkuche H, Schellhorn C, Schemann M, Aschenbach JR, Gabel G. Age-associated plasticity in the intrinsic innervation of the ovine rumen. J Anat 2003; 203: 27782.
  • 28
    Wade PR, Scheer G, Regan K, Lieb J. Age-related changes in colonic motility and myenteric neuronal populations. Soc Neurosci Abstr 2001; 27: 840.812.
  • 29
    Santer RM, Baker DM. Enteric neuron numbers and sizes in Auerbach's plexus in the small and large intestine of adult and aged rats. J Auton Nerv Syst 1988; 25: 5967.
  • 30
    Cowen T, Johnson RJ, Soubeyre V, Santer RM. Restricted diet rescues rat enteric motor neurones from age related cell death. Gut 2000; 47: 65360.
  • 31
    Phillips RJ, Powley TL. As the gut ages: timetables for aging of innervation vary by organ in the Fischer 344 rat. J Comp Neurol 2001; 434: 35877.
  • 32
    El Salhy M, Sandstrom O, Holmlund F. Age-induced changes in the enteric nervous system in the mouse. Mech Ageing Dev 1999; 107: 93103.
  • 33
    O'Mahony D, O'Leary P, Quigley EM. Aging and intestinal motility: a review of factors that affect intestinal motility in the aged. Drugs Aging 2002; 19: 51527.
  • 34
    Firth M, Prather CM. Gastrointestinal motility problems in the elderly patient. Gastroenterology 2002; 122: 1688700.
  • 35
    Santer RM. Survival of the population of NADPH-diaphorase stained myenteric neurons in the small intestine of aged rats. J Auton Nerv Syst 1994; 49: 11521.
  • 36
    Phillips RJ, Kieffer EJ, Powley TL. Aging of the myenteric plexus: neuronal loss is specific to cholinergic neurons. Auton Neurosci 2003; 106: 6983.
  • 37
    Feher E, Penzes L. Density of substance P, vasoactive intestinal polypeptide and somatostatin-containing nerve fibers in the ageing small intestine of the rats. Gerontology 1987; 33: 3418.
  • 38
    Rogers J, Khan M, Ellis J. Calretinin and other CaBPs in the nervous system. Adv Exp Med Biol 1990; 269: 195203.
  • 39
    DeFelipe J. Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. J Chem Neuroanat 1997; 14: 119.
  • 40
    Kwong WH, Chan WY, Lee KK, Fan M, Yew DT. Neurotransmitters, neuropeptides and calcium binding proteins in developing human cerebellum: a review. Histochem J 2000; 32: 52134.
  • 41
    Jenkinson KM, Morgan JM, Furness JB, Southwell BR. Neurons bearing NK(3) tachykinin receptors in the guinea-pig ileum revealed by specific binding of fluorescently labelled agonists. Histochem Cell Biol 1999; 112: 23346.
  • 42
    Corns RA, Hidaka H, Santer RM. Neurocalcin-alpha immunoreactivity in the enteric nervous system of young and aged rats. Cell Calcium 2002; 31: 538.
  • 43
    Baimbridge KG, Celio MR, Rogers JH. Calcium-binding proteins in the nervous system. Trends Neurosci 1992; 15: 3038.
  • 44
    Heizmann CW. Calcium-binding proteins: basic concepts and clinical implications. Gen Physiol Biophys 1992; 11: 41125.
  • 45
    Schwaller B, Meyer M, Schiffmann S. ‘New’ functions for ‘old’ proteins: the role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum 2002; 1: 24158.
  • 46
    Billing-Marczak K, Kuznicki J. Calretinin-sensor or buffer-function still unclear. Pol J Pharmacol 1999; 51: 1738.
  • 47
    Harman D. Lipofuscin and ceroid formation: the cellular recycling system. Adv Exp Med Biol 1989; 266: 315.