The effect of nitric oxide donors on nitric oxide synthase-expressing myenteric neurones in culture1


  • 1

    Parts of this study have already been published in abstract form.1–3

Pieter Vanden Berghe PhD, Centre for Gastroenterological Research K.U. Leuven, Herestraat 49, 3000 Leuven, Belgium.
Tel: +32 16 345762; fax: +32 16 345939; e-mail:


Abstract  Previously, we demonstrated that intestinal inflammation leads to a postinflammatory loss of nitric oxide synthase (NOS)-expressing myenteric neurones and motility disturbances. Here, we investigated whether high NO concentrations could be responsible for the decrease in NOS neurones. Myenteric neurone cultures, prepared from guinea-pig small intestine, were incubated with NO donors [sodium nitroprusside (SNP) and 3-morpholinosydnonimine (SIN-1)]. After fixation, NOS neurones were identified by NADPH diaphorase staining and neurone-specific enolase (NSE)-positive neuronal content was assessed with an enzyme-linked immunosorbent assay (ELISA)-based method. Twenty-four hours incubation with SIN-1 (10−3 mol L−1) or SNP (10−4 mol L−1 or higher) reduced the number of NADPH diaphorase-positive neurones. SNP incubation did not affect the NSE-positive neuronal content. Shorter incubations (SNP: 4 and 12 h) had no significant effect. The SNP-induced reduction was reversed by glutathione (GSH), but not by NO- or Oinline image-scavengers, whereas GSH depletion enhanced the decrease. The NO-dependent guanylate cyclase-blocker 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) did not affect the SNP effect. This reduction can be explained by either specific apoptosis of NOS neurones or downregulation of NOS activity. However, TdT-mediated X-dUTP nick end labelling (TUNEL®) stainings argue in favour of the latter. In conclusion, the NO donor SNP decreases the number of NOS-expressing myenteric neurones time and concentration dependently, without affecting the amount of neuronal material. Glutathione plays an important protective role.