• 1
    Gershon MD. Review article: serotonin receptors and transporters – roles in normal and abnormal gastrointestinal motility. Aliment Pharmacol Ther 2004; 20: 314.
  • 2
    Racke K, Schworer H. Regulation of serotonin release from the intestinal mucosa. Pharmacol Res 1991; 23: 1325.
  • 3
    Young HM, Furness JB. Ultrastructural examination of the targets of serotonin-immunoreactive descending interneurons in the guinea pig small intestine. J Comp Neurol 1995; 356: 10114.
  • 4
    Costa M, Brookes SJ, Steele PA, Gibbins I, Burcher E, Kandiah CJ. Neurochemical classification of myenteric neurons in the guinea-pig ileum. Neuroscience 1996; 75: 94967.
  • 5
    Tamir H, Theoharides T, Gershon M, Askenase P. Serotonin storage pools in basophil leukemia and mast cells: characterization of two types of serotonin binding protein and radioautographic analysis of the intracellular distribution of [3H]serotonin. J Cell Biol 1982; 93: 63847.
  • 6
    Coleman J, Holliday M, Kimber I, Zsebo K, Galli S. Regulation of mouse peritoneal mast cell secretory function by stem cell factor, IL-3 or IL-4. J Immunol 1993; 150: 55662.
  • 7
    Enerback L. Serotonin in human mast cells. Nature 1963; 197: 6101.
  • 8
    Van Zwieten PA. Pathophysiological relevance of serotonin. J Cardiovasc Pharmacol 1987; 10 (Suppl. 3): S1925.
  • 9
    Vanhoutte PM, Cohen RA. The elusory role of serotonin in vascular function and disease. Biochem Pharmacol 1983; 32: 36714.
  • 10
    Zhu JX, Wu XY, Owyang C, Li Y. Intestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the rat. J Physiol (Lond) 2001; 530: 43142.
  • 11
    Kim D-Y, Camilleri M. Serotonin: a mediator of the brain-gut connection. Am J Gastroenterol 2000; 95: 2698709.
  • 12
    Fiorica-Howells E, Maroteaux L, Gershon MD. Serotonin and the 5-HT(2B) receptor in the development of enteric neurons. J Neurosci 2000; 20: 294305.
  • 13
    Nebigil CG, Etienne N, Messaddeq N, Maroteaux L. Serotonin is a novel survival factor of cardiomyocytes: mitochondria as a target of 5-HT2B receptor signaling. FASEB J 2003; 17: 13735.
  • 14
    Hirst GDS, Edwards FR. Role of interstitial cells of Cajal in the control of gastric motility. J Pharmacol Sci 2004; 96: 110.
  • 15
    Epperson A, Hatton WJ, Callaghan B et al. Molecular markers expressed in cultured and freshly isolated interstitial cells of Cajal. Am J Physiol Cell Physiol 2000; 279: C52939.
  • 16
    Liu M, Geddis MS, Wen Y, Setlik W, Gershon MD. Expression and function of 5-HT4 receptors in the mouse enteric nervous system. Am J Physiol Gastrointest Liver Physiol 2005; 289: G114863.
  • 17
    Glatzle J, Sternini C, Robin C et al. Expression of 5-HT3 receptors in the rat gastrointestinal tract. Gastroenterology 2002; 123: 21726.
  • 18
    Poole DP, Xu B, Koh SL et al. Identification of neurons that express 5-hydroxytryptamine4 receptors in intestine. Cell Tissue Res 2006; 325: 41322.
  • 19
    Ward SM, Burns AJ, Torihashi S, Sanders KM. Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol 1994; 480: 917.
  • 20
    Thomsen L, Robinson TL, Lee JCF, Hughes MJG, Andrews DW, Huizinga JD. Interstitial cells of Cajal generate a rhythmic pacemaker current. Nat Med 1998; 4: 84851.
  • 21
    Ward SM, Baker SA, De Faoite A, Sanders KM. Propagation of slow waves requires IP3 receptors and mitochondrial Ca2+ uptake in canine colonic muscles. J Physiol (Lond) 2003; 549: 20718.
  • 22
    Sanders KM, Stevens R, Burke E, Ward SW. Slow waves actively propagate at submucosal surface of circular layer in canine colon. Am J Physiol 1990; 259: G2563.
  • 23
    Pluja L, Alberti E, Fernandez E, Mikkelsen HB, Thuneberg L, Jimenez M. Evidence supporting presence of two pacemakers in rat colon. Am J Physiol Gastrointest Liver Physiol 2001; 281: G25566.
  • 24
    Daniel EE. Communication between interstitial cells of Cajal and gastrointestinal muscle. Neurogastroenterol Motil 2004; 16: 11822.
  • 25
    Schultz T, Daniel V, Daniel EE. Does ICC pacing require functional gap junctions between ICC and smooth muscle in mouse intestine? Neurogastroenterol Motil 2003; 15: 12938.
  • 26
    Wang XY, Paterson C, Huizinga JD. Cholinergic and nitrergic innervation of ICC-DMP and ICC-IM in the human small intestine. Neurogastroenterol Motil 2003; 15: 53143.
  • 27
    Iino S, Ward SM, Sanders KM. Interstitial cells of Cajal are functionally innervated by excitatory motor neurones in the murine intestine. J Physiol 2004; 556: 52130.
  • 28
    Ward SM, Morris G, Reese L, Wang XY, Sanders KM. Interstitial cells of Cajal mediate enteric inhibitory neurotransmission in the lower esophageal and pyloric sphincters. Gastroenterology 1998; 115: 31429.
  • 29
    Farrugia G, Szurszewski JH. Heme oxygenase, carbon monoxide, and interstitial cells of Cajal. Microsc Res Tech 1999; 47: 3214.
  • 30
    Miller SM, Farrugia G, Schmalz PF, Ermilov LG, Maines MD, Szurszewski JH. Heme oxygenase 2 is present in interstitial cell networks of the mouse small intestine. Gastroenterology 1998; 114: 23944.
  • 31
    Miller SM, Reed D, Sarr MG, Farrugia G, Szurszewski JH. Haem oxygenase in enteric nervous system of human stomach and jejunum and co-localization with nitric oxide synthase. Neurogastroenterol Motil 2001; 13: 12131.
  • 32
    Szurszewski JH, Farrugia G. Carbon monoxide is an endogenous hyperpolarizing factor in the gastrointestinal tract. Neurogastroenterol Motil 2004; 16: 815.
  • 33
    Thuneberg L, Peters S. Toward a concept of stretch-coupling in smooth muscle. I. Anatomy of intestinal segmentation and sleeve contractions. Anat Rec 2001; 262: 11024.
  • 34
    Strege PR, Holm AN, Rich A et al. Cytoskeletal modulation of sodium current in human jejunal circular smooth muscle cells. Am J Physiol Cell Physiol 2003; 284: C606.
  • 35
    De Ponti F. Pharmacology of serotonin: what a clinician should know. Gut 2004; 53: 152035.
  • 36
    Peters JA, Malone HM, Lambert JJ. Recent advances in the electrophysiological characterization of 5-HT3 receptors. Trends Pharmacol Sci 1992; 13: 3917.
  • 37
    Peters JA, Kelley SP, Dunlop JI, Kirkness EF, Hales TG, Lambert JJ. The 5-hydroxytryptamine type 3 (5-HT3) receptor reveals a novel determinant of single-channel conductance. Biochem Soc Trans 2004; 32(Pt 3): 54752.
  • 38
    Pan H, Galligan JJ. 5-HT1A and 5-HT4 receptors mediate inhibition and facilitation of fast synaptic transmission in enteric neurons. Am J Physiol 1994; 266: G2308.
  • 39
    Prins NH, Van Haselen JFWR, Lefebvre RA, Briejer MR, Akkermans LMA, Schuurkes JAJ. Pharmacological characterization of 5-HT4 receptors mediating relaxation of canine isolated rectum circular smooth muscle. Br J Pharmacol 1999; 127: 14317.
  • 40
    Liu M, Geddis MS, Wen Y, Setlik W, Gershon MD. Expression and function of 5-HT4 receptors in the mouse enteric nervous system. Am J Physiol Gastrointest Liver Physiol 2005; 289: G114863.
  • 41
    Malysz J, Donnelly G, Huizinga JD. Regulation of slow wave frequency by IP3-sensitive calcium release in the murine small intestine. Am J Physiol Gastrointest Liver Physiol 2001; 280: G43948.
  • 42
    Liu M, Gershon MD. Neuroprotective/trophic effects of 5-HT4 receptor stimulation on enteric neurons of mice (Abstract). Neurogastroenterol Motil 2006; 18: 780.
  • 43
    Chang IY, Glasgow NJ, Takayama I, Horiguchi K, Sanders KM, Ward SM. Loss of interstitial cells of Cajal and development of electrical dysfunction in murine small bowel obstruction. J Physiol (Lond) 2001; 536: 55568.
  • 44
    Wang XY, Berezin I, Mikkelsen HB et al. Pathology of interstitial cells of Cajal in relation to inflammation revealed by ultrastructure but not immunohistochemistry. Am J Pathol 2002; 160: 152940.
  • 45
    Vanderwinden J-M, Liu H, Menu R, Conreur J-L, De Laet M-H, Vanderhaeghen J-J. The pathology of infantile hypertrophic pyloric stenosis after healing. J Pediatr Surg 1996; 31: 15304.
  • 46
    Fanburg BL, Lee SL. A new role for an old molecule: serotonin as a mitogen. Am J Physiol 1997; 272: L795806.
  • 47
    Banasr M, Hery M, Printemps R, Daszuta A. Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 2004; 29: 45060.
  • 48
    Huang G-J, Herbert J. The role of 5-HT1A receptors in the proliferation and survival of progenitor cells in the dentate gyrus of the adult hippocampus and their regulation by corticoids. Neuroscience 2005; 135: 80313.
  • 49
    Radley JJ, Jacobs BL. 5-HT1A receptor antagonist administration decreases cell proliferation in the dentate gyrus. Brain Res 2002; 955: 2647.
  • 50
    Cattaneo MG, Fesce R, Vicentini LM. Mitogenic effect of serotonin in human small cell lung carcinoma cells via both 5-HT1A and 5-HT1D receptors. Eur J Pharmacol 1995; 291: 20911.
  • 51
    Abdouh M, Albert PR, Drobetsky E, Filep JG, Kouassi E. 5-HT1A-mediated promotion of mitogen-activated T and B cell survival and proliferation is associated with increased translocation of NF-kappaB to the nucleus. Brain Behav Immun 2004; 18: 2434.
  • 52
    Sempere T, Urbina M, Lima L. 5-HT1A and beta-adrenergic receptors regulate proliferation of rat blood lymphocytes. Neuroimmunomodulation 2004; 11: 30715.
  • 53
    Lesurtel M, Graf R, Aleil B et al. Platelet-derived serotonin mediates liver regeneration. Science 2006; 312: 1047.
  • 54
    Nebigil CG, Launay JM, Hickel P, Tournois C, Maroteaux L. 5-hydroxytryptamine 2B receptor regulates cell-cycle progression: cross-talk with tyrosine kinase pathways. Proc Natl Acad Sci U S A 2000; 97: 25916.
  • 55
    De Lucchini S, Ori M, Cremisi F, Nardini M, Nardi I. 5-HT2B-mediated serotonin signaling is required for eye morphogenesis in Xenopus. Mol Cell Neurosci 2005; 29: 299312.
  • 56
    De Lucchini S, Ori M, Nardini M, Marracci S, Nardi I. Expression of 5-HT2B and 5-HT2C receptor genes is associated with proliferative regions of Xenopus developing brain and eye. Brain Res Mol Brain Res 2003; 115: 196201.
  • 57
    Streutker KJ, Colley EC, Hillsley K, Kelly SM, Hicks GA, Stead RH. 5-HT2B receptors (5-HT2B) are expressed on neurons and non-neuronal cells in the human gastrointestinal tract, rat colon and rat DRG (abstract). Gastroenterology 2006; 130: 227.
  • 58
    Choi DS, Maroteaux L. Immunohistochemical localisation of the serotonin 5-HT2B receptor in mouse gut, cardiovascular system, and brain. FEBS Lett 1996; 391: 4551.
  • 59
    Fiorica-Howells E, Maroteaux L, Gershon MD. 5-HT2B receptors are expressed by neuronal precursors in the enteric nervous system of fetal mice and promote neuronal differentiation. Ann N Y Acad Sci 1998; 861: 246.
  • 60
    Wouters MM, Roeder JL, Strege PR, Gibbons SJ, Farrugia G. Proliferation of the interstitial cells of Cajal is induced by serotonin through 5-HT2B receptors (abstract). Neurogastroenterol Motil 2006; 18: 759.
  • 61
    Wade PR, Chen J, Jaffe B, Kassem IS, Blakely RD, Gershon MD. Localization and function of a 5-HT transporter in crypt epithelia of the gastrointestinal tract. J Neurosci 1996; 16: 235264.
  • 62
    Chen JX, Pan H, Rothman TP, Wade PR, Gershon MD. Guinea pig 5-HT transporter: cloning, expression, distribution, and function in intestinal sensory reception. Am J Physiol 1998; 275: G43348.
  • 63
    Kirchgessner AL, Gershon MD. Projections of submucosal neurons to the myenteric plexus of the guinea pig intestine: in vitro tracing of microcircuits by retrograde and anterograde transport. J Comp Neurol 1988; 277: 48798.
  • 64
    Kirchgessner AL, Tamir H, Gershon MD. Identification and stimulation by serotonin of intrinsic sensory neurons of the submucosal plexus of the guinea pig gut: activity-induced expression of Fos immunoreactivity. J Neurosci 1992; 12: 23548.
  • 65
    O'Hara JR, Ho W, Linden DR, Mawe GM, Sharkey KA. Enteroendocrine cells and 5-HT availability are altered in mucosa of guinea pigs with TNBS ileitis. Am J Physiol Gastrointest Liver Physiol 2004; 287: G9981007.
  • 66
    Linden DR, Foley KF, Mcquoid C, Simpson J, Sharkey KA, Mawe GM. Serotonin transporter function and expression are reduced in mice with TNBS-induced colitis. Neurogastroenterol Motil 2005; 17: 56574.
  • 67
    Zarate N, Wang XY, Tougas G et al. Intramuscular interstitial cells of Cajal associated with mast cells survive nitrergic nerves in achalasia. Neurogastroenterol Motil 2006; 18: 55668.
  • 68
    Camilleri M. Management of the irritable bowel syndrome. Gastroenterology 2001; 120: 65268.
  • 69
    Dunlop SP, Jenkins D, Spiller RC. Distinctive clinical, psychological, and histological features of postinfective irritable bowel syndrome. Am J Gastroenterol 2003; 98: 157883.
    Direct Link:
  • 70
    Niesler B, Frank B, Kapeller J, Rappold GA. Cloning, physical mapping and expression analysis of the human 5-HT3 serotonin receptor-like genes HTR3C, HTR3D and HTR3E. Gene 2003; 310: 10111.
  • 71
    Karnovsky AM, Gotow LF, McKinley DD et al. A cluster of novel serotonin receptor 3-like genes on human chromosome 3. Gene 2003; 319: 13748.
  • 72
    Davies PA, Pistis M, Hanna MC et al. The 5-HT3B subunit is a major determinant of serotonin-receptor function. Nature 1999; 397: 35963.
  • 73
    Brady CA, Stanford IM, Ali I et al. Pharmacological comparison of human homomeric 5-HT3A receptors versus heteromeric 5-HT3A/3B receptors. Neuropharmacology 2001; 41: 2824.
  • 74
    Dubin AE, Erlander MG, Huvar A, Buehler LK. DNA encoding a human subunit 4-HT3-C of the 5-HT3 serotonin receptor. USA patent 20020137138, 2002.
  • 75
    Michel K, Zeller F, Langer R et al. Serotonin excites neurons in the human submucous plexus via 5-HT3 receptors. Gastroenterology 2005; 128: 131726.
  • 76
    Foxx-Orenstein AE, Kuemmerle JF, Grider JR. Distinct 5-HT receptors mediate the peristaltic reflex induced by mucosal stimuli in human and guinea pig intestine. Gastroenterology 1996; 111: 128190.
  • 77
    Bjornsson ES, Chey WD, Hooper F, Woods ML, Owyang C, Hasler WL. Impaired gastrocolonic response and peristaltic reflex in slow-transit constipation: role of 5-HT(3) pathways. Am J Physiol Gastrointest Liver Physiol 2002; 283: G4007.
  • 78
    Cremonini F, Delgado-Aros S, Camilleri M. Efficacy of alosetron in irritable bowel syndrome: a meta-analysis of randomized controlled trials. Neurogastroenterol Motil 2003; 15: 7986.
  • 79
    Mader R, Kocher T, Haier J, Wieczorek G, Pfannkuche HJ, Ito M. Investigation of serotonin type 4 receptor expression in human and non-human primate gastrointestinal samples. Eur J Gastroenterol Hepatol 2006; 18: 94550.
  • 80
    Blondel O, Gastineau M, Dahmoune Y, Langlois M, Fischmeister R. Cloning, expression, and pharmacology of four human 5-hydroxytryptamine 4 receptor isoforms produced by alternative splicing in the carboxyl terminus. J Neurochem 1998; 70: 225261.
  • 81
    Brattelid T, Kvingedal AM, Krobert KA et al. Cloning, pharmacological characterisation and tissue distribution of a novel 5-HT4 receptor splice variant, 5-HT4(i). Naunyn Schmiedebergs Arch Pharmacol 2004; 369: 61628.
  • 82
    Leclere PG, Prins NH, Schuurkes JA, Lefebvre RA. 5-HT4 receptors located on cholinergic nerves in human colon circular muscle. Neurogastroenterol Motil 2005; 17: 36675.
  • 83
    Cellek S, John AK, Thangiah R et al. 5-HT4 receptor agonists enhance both cholinergic and nitrergic activities in human isolated colon circular muscle. Neurogastroenterol Motil 2006; 18: 85361.
  • 84
    Streutker C, Colley EC, Hillsley K, Hicks GA, Kelly SM, Stead RH. 5-HT4 receptor-immunoreactivity (5-HT4-IR) is expressed in non-neuronal cells of the human gastrointestinal (GI) tract (abstract). Neurogstroenterol Motil 2006; 18: 672.
  • 85
    Schemann M, Michel K, Ceregrzyn M, Zeller F, Seidl S, Bischoff SC. Human mast cell mediator cocktail excites neurons in human and guinea-pig enteric nervous system. Neurogastroenterol Motil 2005; 17: 2819.
  • 86
    Grider JR, Foxx-Orenstein AE, Jin JG. 5-Hydroxytryptamine4 receptor agonists initiate the peristaltic reflex in human, rat, and guinea pig intestine. Gastroenterology 1998; 115: 37080.
  • 87
    Krobert KA, Bach T, Syversveen T, Kvingedal AM, Levy FO. The cloned human 5-HT7 receptor splice variants: a comparative characterization of their pharmacology, function and distribution. Naunyn Schmiedebergs Arch Pharmacol 2001; 363: 62032.
  • 88
    Prins NH, Briejer MR, Van Bergen PJ, Akkermans LM, Schuurkes JA. Evidence for 5-HT7 receptors mediating relaxation of human colonic circular smooth muscle. Br J Pharmacol 1999; 128: 84952.
  • 89
    Tam FS, Hillier K, Bunce KT. Characterization of the 5-hydroxytryptamine receptor type involved in inhibition of spontaneous activity of human isolated colonic circular muscle. Br J Pharmacol 1994; 113: 14350.
  • 90
    Borman RA, Tilford NS, Harmer DW et al. 5-HT(2B) receptors play a key role in mediating the excitatory effects of 5-HT in human colon in vitro. Br J Pharmacol 2002; 135: 114451.