SEARCH

SEARCH BY CITATION

References

  • 1
    Holzer P. TRPV1 and the gut: from a tasty receptor for a painful vanilloid to a key player in hyperalgesia. Eur J Pharmacol 2004; 500: 23141.
  • 2
    Bartho L, Szolcsanyi J. The site of action of capsaicin on the guinea-pig isolated ileum. Naunyn Schmiedebergs Arch Pharmacol 1978; 305: 7581.
  • 3
    Szolcsanyi J, Bartho L. New type of nerve-mediated cholinergic contractions of the guinea-pig small intestine and its selective blockade by capsaicin. Naunyn Schmiedebergs Arch Pharmacol 1978; 305: 8390.
  • 4
    Holzer P. Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience 1988; 24: 73968.
  • 5
    Maggi CA, Patacchini R, Santicioli P, Theodorsson E, Meli A. Several neuropeptides determine the visceromotor response to capsaicin in the guinea-pig isolated ileal longitudinal muscle. Eur J Pharmacol 1988; 148: 439.
  • 6
    Holzer P, Maggi CA. Dissociation of dorsal root ganglion neurons into afferent and efferent-like neurons. Neuroscience 1998; 86: 38998.
  • 7
    Holzer P. Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol Rev 1991; 43: 143201.
  • 8
    Maggi CA. Capsaicin-sensitive nerves in the gastrointestinal tract. Arch Int Pharmacodyn Ther 1990; 303: 15766.
  • 9
    Holzer P. Efferent-like roles of afferent neurons in the gut: Blood flow regulation and tissue protection. Auton Neurosci 2006; 125: 705.
  • 10
    Bartho L, Benko R, Patacchini R et al. Effects of capsaicin on visceral smooth muscle: a valuable tool for sensory neurotransmitter identification. Eur J Pharmacol 2004; 500: 14357.
  • 11
    Bartho L, Holzer P, Lembeck F, Szolcsanyi J. Evidence that the contractile response of the guinea-pig ileum to capsaicin is due to release of substance P. J Physiol 1982; 332: 15767.
  • 12
    Chahl LA. Evidence that the contractile response of the guinea-pig ileum to capsaicin is due to substance P release. Naunyn Schmiedebergs Arch Pharmacol 1982; 319: 2125.
  • 13
    Bartho L., Holzer P. The inhibitory modulation of guinea-pig intestinal peristalsis caused by capsaicin involves calcitonin gene-related peptide and nitric oxide. Naunyn Schmiedebergs Arch Pharmacol 1995; 353: 1029.
  • 14
    Bartho L, Koczan G, Holzer P, Maggi CA, Szolcsanyi J. Antagonism of the effects of calcitonin gene-related peptide and of capsaicin on the guinea-pig isolated ileum by human alpha-calcitonin gene-related peptide(8-37). Neurosci Lett 1991; 129: 1569.
  • 15
    Fujimoto S, Mori M. Characterization of capsaicin-induced, capsazepine-insensitive relaxation of ileal smooth muscle of rats. Eur J Pharmacol 2004; 487: 17582.
  • 16
    Fujimoto S, Mori M, Tsushima H, Kunimatsu M. Capsaicin-induced, capsazepine-insensitive relaxation of the guinea-pig ileum. Eur J Pharmacol 2006; 530: 14451.
  • 17
    Ward SM, Bayguinov J, Won KJ, Grundy D, Berthoud HR. Distribution of the vanilloid receptor (VR1) in the gastrointestinal tract. J Comp Neurol 2003; 465: 12135.
  • 18
    Szallasi A, Blumberg PM. Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol Rev 1991; 51: 159212.
  • 19
    Correll CC, Phelps PT, Anthes JC, Umland S, Greenfeder S. Cloning and pharmacological characterization of mouse TRPV1. Neurosci Lett 2004; 370: 5560.
  • 20
    Storr M. TRPV1 in colitis: is it a good or a bad receptor? – a viewpoint. Neurogastroenterol Motil 2007; 19: 6259.
  • 21
    De Man JG, De Winter BY, Seerden TC, De Schepper HU, Herman AG, Pelckmans PA. Functional evidence that ATP or a related purine is an inhibitory NANC neurotransmitter in the mouse jejunum: study on the identity of P2X and P2Y purinoceptors involved. Br J Pharmacol 2003; 140: 110816.
  • 22
    De Schepper HU, De Winter BY, Seerden TC, Herman AG, Pelckmans PA, De Man JG. Functional characterisation of tachykinin receptors in the circular muscle layer of the mouse ileum. Regul Pept 2005; 130: 10515.
  • 23
    Bevan S, Hothi S, Hughes G et al. Capsazepine: a competitive antagonist of the sensory neurone excitant capsaicin. Br J Pharmacol 1992; 107: 54452.
  • 24
    Gunthorpe MJ, Rami HK, Jerman JC et al. Identification and characterisation of SB-366791, a potent and selective vanilloid receptor (VR1/TRPV1) antagonist. Neuropharmacology 2004; 46: 13349.
  • 25
    Varga A, Nemeth J, Szabo A et al. Effects of the novel TRPV1 receptor antagonist SB-366791 in vitro and in vivo in the rat. Neurosci Lett 2005; 385: 13742.
  • 26
    Wahl P, Foged C, Tullin S, Thomsen C. Iodo-resiniferatoxin, a new potent vanilloid receptor antagonist. Mol Pharmacol 2001; 59: 915.
  • 27
    Undem BJ, Kollarik M. Characterization of the vanilloid receptor 1 antagonist iodo-resiniferatoxin on the afferent and efferent function of vagal sensory C-fibers. J Pharmacol Exp Ther 2002; 303: 71622.
  • 28
    Seabrook GR, Sutton KG, Jarolimek W et al. Functional properties of the high-affinity TRPV1 (VR1) vanilloid receptor antagonist (4-hydroxy-5-iodo-3-methoxyphenylacetate ester) iodo-resiniferatoxin. J Pharmacol Exp Ther 2002; 303: 105260.
  • 29
    Pomonis JD, Harrison JE, Mark L, Bristol DR, Valenzano KJ, Walker K. N-(4-Tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropyrazine -1(2H)-carbox-amide (BCTC), a novel, orally effective vanilloid receptor 1 antagonist with analgesic properties: II. in vivo characterization in rat models of inflammatory and neuropathic pain. J Pharmacol Exp Ther 2003; 306: 38793.
  • 30
    Valenzano KJ, Grant ER, Wu G et al. N-(4-tertiarybutylphenyl)-4-(3-chloropyridin-2-yl)tetrahydropyrazine -1(2H)-carbox-amide (BCTC), a novel, orally effective vanilloid receptor 1 antagonist with analgesic properties: I. in vitro characterization and pharmacokinetic properties. J Pharmacol Exp Ther 2003; 306: 37786.
  • 31
    Geber C, Mang CF, Kilbinger H. Facilitation and inhibition by capsaicin of cholinergic neurotransmission in the guinea-pig small intestine. Naunyn Schmiedebergs Arch Pharmacol 2006; 372: 27783.
  • 32
    Bartho L, Holzer P. Search for a physiological role of substance P in gastrointestinal motility. Neuroscience 1985; 16: 132.
  • 33
    Patacchini R, Bartho L, Holzer P, Maggi CA. Activity of SR 142801 at peripheral tachykinin receptors. Eur J Pharmacol 1995; 278: 1725.
  • 34
    Bartho L, Lenard L Jr, Patacchini R et al. Tachykinin receptors are involved in the ‘local efferent’ motor response to capsaicin in the guinea-pig small intestine and oesophagus. Neuroscience 1999; 90: 2218.
  • 35
    Arbuckle JB, Docherty RJ. Expression of tetrodotoxin-resistant sodium channels in capsaicin-sensitive dorsal root ganglion neurons of adult rats. Neurosci Lett 1995; 185: 7073.
  • 36
    Bartho L, Maggi CA, Wilhelm M, Patacchini R. Tachykinin NK1 and NK2 receptors mediate atropine-resistant ileal circular muscle contractions evoked by capsaicin. Eur J Pharmacol 1994; 259: 18793.
  • 37
    Kadowaki M, Kuramoto H, Takaki M. Combined determination with functional and morphological studies of origin of nerve fibers expressing transient receptor potential vanilloid 1 in the myenteric plexus of the rat jejunum. Auton Neurosci 2004; 116: 118.
  • 38
    Johnson PJ, Bornstein JC, Burcher E. Roles of neuronal NK1 and NK3 receptors in synaptic transmission during motility reflexes in the guinea-pig ileum. Br J Pharmacol 1998; 124: 137584.
  • 39
    Sanger GJ. Neurokinin NK1 and NK3 receptors as targets for drugs to treat gastrointestinal motility disorders and pain. Br J Pharmacol 2004; 141: 130312.
  • 40
    Schmid G, Carita F, Bonanno G, Raiteri M. NK-3 receptors mediate enhancement of substance P release from capsaicin-sensitive spinal cord afferent terminals. Br J Pharmacol 1998; 125: 6216.
  • 41
    Shafton AD, Bogeski G, Kitchener PD, Lewis VA, Sanger GJ, Furness JB. Effects of the peripherally acting NK receptor antagonist, SB-235375, on intestinal and somatic nociceptive responses and on intestinal motility in anaesthetized rats. Neurogastroenterol Motil 2004; 16: 2231.
  • 42
    Guo JZ, Yoshioka K, Otsuka M. Effects of a tachykinin NK3 receptor antagonist, SR 142801, studied in isolated neonatal rat spinal cord. Neuropeptides 1998; 32: 53742.
  • 43
    Bartho L, Vizi ES. Neurochemical evidence for the release of acetylcholine from the guinea-pig ileum myenteric plexus by capsaicin. Eur J Pharmacol 1985; 110: 1257.
  • 44
    Bartho L, Benko R, Lazar Z, Illenyi L, Horvath OP. Nitric oxide is involved in the relaxant effect of capsaicin in the human sigmoid colon circular muscle. Naunyn Schmiedebergs Arch Pharmacol 2002; 366: 496500.
  • 45
    Benko R, Lazar Z, Undi S et al. Inhibition of niric oxide synthesis blocks the inhibitory response to capsaicin in intestinal circular muscle preparations from different species. Life Sci 2005; 76: 277382.
  • 46
    Nocerino E, Izzo AA, Borrelli F et al. Relaxant effect of capsazepine in the isolated rat ileum. Naunyn Schmiedebergs Arch Pharmacol 2002; 365: 18792.
  • 47
    Liu L, Simon SA. Capsazepine, a vanilloid receptor antagonist, inhibits nicotinic acetylcholine receptors in rat trigeminal ganglia. Neurosci Lett 1997; 228: 2932.
  • 48
    Weil A, Moore SE, Waite NJ, Randall A, Gunthorpe MJ. Conservation of functional and pharmacological properties in the distantly related temperature sensors TRVP1 and TRPM8. Mol Pharmacol 2005; 68: 51827.
  • 49
    Zhang L, Jones S, Brody K, Costa M, Brookes SJ. Thermosensitive transient receptor potential channels in vagal afferent neurons of the mouse. Am J Physiol 2003; 286: G98391.
  • 50
    Behrendt HJ, Germann T, Gillen C, Hatt H, Jostock R. Characterization of the mouse cold-menthol receptor TRPM8 and vanilloid receptor type-1 VR1 using a fluorometric imaging plate reader (FLIPR) assay. Br J Pharmacol 2004; 141: 73745.
  • 51
    Mustafa S, Oriowo M. Cooling-induced contraction of the rat gastric fundus: mediation via transient receptor potential (TRP) cation channel TRPM8 receptor and Rho-kinase activation. Clin Exp Pharmacol Physiol 2005; 32: 8328.