SEARCH

SEARCH BY CITATION

References

  • 1
    Matsunaga Y, Ueki S, Matsumura T et al. Z-338, a novel gastroprokinetic agent stimulates gastrointestinal motor activity and improves delayed gastric emptying in the dog and rat. Jpn J Pharmacol 1998; 76(Suppl. 1): 290.
  • 2
    Ueki S, Yoshida K, Eta R et al. In vitro pharmacological profiles of Z-338, a novel prokinetic agent. Jpn J Pharmacol 1998; 76(Suppl. 1): 290.
  • 3
    Nakajima T, Nawata H, Ito Y. Z-338, a newly synthetized carboxyamide derivative, stimulates gastric motility through enhancing the excitatory neurotransmission. J Smooth Muscle Res 2000; 36: 6981.
  • 4
    Ogishima M, Kaibara M, Ueki S, Kurimoto T, Taniyama K. Z-338 facilitates acetylcholine release from enteric neurons due to blockade of muscarinic autoreceptors in guinea pig stomach. J Pharmacol Exp Ther 2000; 294: 337.
  • 5
    Iwanaga Y, Kimura T, Miyashita N et al. Characterization of acetylcholinesterase inhibition by itopride. Jpn J Pharmacol 1994; 66: 31722.
  • 6
    Iwanaga Y, Miyashita N, Morikawa K, Mizumoto A, Kondo Y, Itoh Z. A novel water soluble dopamine-2 antagonist with anticholinesterase activity in gastrointestinal motor activity. Gastroenterology 1990; 99: 4018.
  • 7
    Yoshida N, Kato S, Ito T. Mosapride citrate. Drugs Future 1993; 18: 5135.
  • 8
    Mönnikes H, Tebbe JJ, Hildebrandt M et al. Role of stress in functional gastrointestinal disorders. Evidence for stress-induced alterations in gastrointestinal motility and sensitivity. Dig Dis 2001; 19: 20111.
  • 9
    Coskin T, Bozkurt A, Alican I, Ozkutlu U, Kurtel H, Yegen BC. Pathway mediating CRF-induced inhibition of gastric emptying in rats. Regul Pept 1997; 69: 11320.
  • 10
    Iwa M, Nakade Y, Pappas TN, Takahashi T. Electroacupuncture improves restraint stress-induced delay of gastric emptying via central glutaminergic pathways in conscious rats. Neurosci Lett 2006; 399: 610.
  • 11
    Paxinos G, Watson C, Pennisi M, Topple A. Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight. J Neurosci Methods 1985; 13: 13943.
  • 12
    Cullen MJ, Ling N, Foster AC, Pelleymounter MA. Urocortin, corticotropin releasing factor-2 receptors and energy balance. Endocrinology 2001; 142: 9929.
  • 13
    Hanada R, Nakazato M, Murakami N et al. A role for neuromedin U in stress response. Biochem Biophys Res Commun 2001; 289: 2258.
  • 14
    Zeng H, Gragerov A, Hohmann JG et al. Neuromedin U receptor 2-deficient mice display differential responses in sensory perception, stress and feeding. Mol Cell Biol 2006; 26: 935263.
  • 15
    Ueta Y, Ozaki Y, Saito J, Onaka T. Involvement of novel feeding-related peptides in neuroendocrine response to stress. Exp Biol Med 2003; 228: 116874.
  • 16
    Minamino N, Kangawa K, Matsuo H. Neuromedin U-8 and U-25: Novel uterus stimulating and hypertensive peptides identified in porcine spinal cord. Biochem Biophys Res Commun 1985; 130: 107885.
  • 17
    Honzawa M, Sudoh T, Minamino N, Tohyama M, Matsuo H. Topographic localization of neuromedin U-like structures in the rat brain: an immunohistochemical study. Neuroscience 1987; 23: 110322.
  • 18
    Ballesta J, Carlei F, Bishop AE et al. Occurrence and developmental pattern of neuromedin U-immunoreactive nerves in the gastrointestinal tract and brain of the rat. Neuroscience 1988; 25: 797816.
  • 19
    Wren AM, Small CJ, Abbott CR et al. Hypothalamic actions of neuromedin U. Endocrinology 2003; 143: 422734.
  • 20
    Howard AD, Wang R, Pong SS et al. Identification of receptors for neuromedin U and its role in feeding. Nature 2000; 406: 704.
  • 21
    Mondal MS, Date Y, Murakami N et al. Neuromedin U acts in the central nervous system to inhibit gastric acid secretion via CRH system. Am J Physiol 2003; 284: G9639.
  • 22
    Zhang X, Fogel R. Involvement of glutamate in gastrointestinal vagovagal reflexes initiated by gastrointestinal distention in the rat. Neurosci 2003; 103: 1937.
  • 23
    Panico WH, Cavuto NJ, Kallimanis G et al. Functional evidence for the presence of nitric oxide synthase in the dorsal motor nucleus of the vagus. Gastroenterology 1995; 109: 148491.
  • 24
    Sivarao DV, Krowicki ZK, Hornby PJ. Role of GABAA receptors in rat hindbrain nuclei controlling gastric motor function. Neurogastroenterol Motil 1998; 10: 30513.
  • 25
    Mullen GP, Mathews EA, Saxena P et al. The Caenorhabditis elegans snf-11 gene encodes a sodium-dependent GABA transporter required for clearance of synaptic GABA. Mol Biol Cell 2006; 17: 302130.
  • 26
    Carrasco GA, Van de Kar LD. Neuroendocrine pharmacology of stress. Eur J Pharmacol 2003; 463: 23572.
  • 27
    Nakade Y, Tsuchida D, Fukuda H et al. Restraint stress delays solid gastric emptying via a central CRF and peripheral sympathetic neuron in rats. Am J Physiol Regul Integr Comp Physiol 2005; 288: R42732.
  • 28
    Brighton PJ, Szekeres PG, Willars GB. Neuromedin U and its receptors: structure, function, and physiological roles. Pharmacol Rev 2004; 56: 23148.
  • 29
    Hanada T, Date Y, Shimbara T et al. Central actions of neuromedin U via corticotropin-releasing hormone. Biochem Biophys Res Commun 2003; 28: 9548.
  • 30
    Sanger GJ, Lee K. Hormones of the gut-brain axis as targets for the treatment of upper gastrointestinal disorders. Nat Rev Drug Discov 2008; 7: 24154.
  • 31
    Date Y, Shimbara T, Koda S et al. Peripheral ghrelin transmits orexigenic signals through the noradrenergic pathway from the hindbrain to the hypothalamus. Cell Metab 2006; 4: 32331.
  • 32
    Date Y, Murakami N, Toshinai K et al. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 2002; 123: 11208.