• 1
    Brown JC, Cook MA, Dryburgh JR. Motilin, a gastric motor activity stimulating polypeptide: the complete amino acid sequence. Can J Biochem 1973; 51: 5337.
  • 2
    Itoh Z, Takeuchi S, Aizawa I et al. Changes in plasma motilin concentration and gastrointestinal contractile activity in conscious dogs. Am J Dig Dis 1978; 23: 92935.
  • 3
    Janssens J, Vantrappen G, Peeters TL. The activity front of the migrating motor complex of the human stomach but not of the small intestine is motilin-dependent. Regul Pept 1983; 6: 3639.
  • 4
    Itoh Z, Honda R, Hiwatashi K et al. Motilin-induced mechanical activity in the canine alimentary tract. Scand J Gasteroenterol 1976; 11(Supp139): 93110.
  • 5
    Lee KY, Chang TM, Chey WY. Effect of rabbit antimotilin serum on myoelectric activity and plasma motilin concentration in fasting dog. Am J Physiol 1983; 245: G54753.
  • 6
    Ozaki K-I, Onoma M, Muramatsu H et al. An orally active motilin receptor antagonist, MA-2029, inhibits motilin-induced gastrointestinal motility, increase in fundic tone, and diarrhea in conscious dogs without affecting gastric emptying. Eur J Pharmacol 2009; 615: 18592.
  • 7
    Sudo H, Yoshida S, Ozaki K et al. Oral administration of MA-2029, a novel selective and competitive motilin receptor antagonist, inhibits motilin-induced intestinal contractions and visceral pain in rabbits. Eur J Pharmacol 2008; 581: 296305.
  • 8
    Van Assche G, Depoortere I, Thijs T, Janssens JJ, Peeters TL. Concentration-dependent stimulation of cholinergic motor nerves or smooth muscle by [Nle13] motilin in the isolated rabbit gastric antrum. Eur J Pharmacol 1997; 337: 26774.
  • 9
    Kitazawa T, Taneike T, Ohga A. Excitatory action of [Leu13] motilin on the gastrointestinal smooth muscle isolated from the chicken. Peptides 1995; 16: 124352.
  • 10
    Strunz U, Domschke W, Mitznegg P et al. Analysis of the motor effects of 13-norleucine motilin on the rabbit, guinea pig, rat and human alimentary tract in vitro. Gastroenterol 1975; 68: 148591.
  • 11
    Adachi H, Toda N, Hayashi S et al. Mechanism of the excitatory action of motilin on isolated rabbit intestine. Gastroenterol 1981; 80: 7838.
  • 12
    Depoortere I, Peeters TL, Vandermeers A, Vandermeers-Piret MC, Christophe J, Vantrappen G. Purification and amino acid sequence of motilin from cat small intestine. Regul Pept 1993; 49: 2532.
  • 13
    Kitazawa T, Ichikawa S, Yokoyama T, Ishii A, Shuto K. Stimulating action of KW-5139 (Leu13-motilin) on gastrointestinal motility in the rabbit. Br J Pharmacol 1994; 111: 28894.
  • 14
    De Clercq P, Depoortere I, Macielag M, Vandermeer A, Vandermeers-Piret MC, Peeters TL. Isolation, sequence, and bioactivity of chicken motilin. Peptides 1996; 17: 2038.
  • 15
    Boivin M, Pinelo LR, St-Pierre S, Poitras P. Neural mediation of the motilin motor effect on the human antrum. Am J Physiol 1997; 272: G716.
  • 16
    De Smet B, Mitselos A, Depoortere I. Motilin and ghrelin as prokinetic drug targets. Pharmacol Ther 2009; 123: 20723.
  • 17
    Coulie B, Tack J, Peeters T, Janssens J. Involvement of two different pathways in the motor effects of erythromycin on the gastric antrum in humans. Gut 1998; 43: 395400.
  • 18
    Poitras P, Miller P, Dickner M et al. Heterogeneity of motilin receptors in the gastrointestinal tract of the rabbit. Peptides 1996; 17: 7017.
  • 19
    Van Assche G, Depoortere I, Peeters TL. Localization of motilin binding sites in subcellular fractions from rabbit antral and colonic smooth muscle tissue. Regul Pept 1998; 77: 8994.
  • 20
    Miller P, Roy A, St-Pierre S, Dagenais M, Lapointe R, Poitras P. Motilin receptors in the human antrum. Am J Physiol Gastrointest Liver Physiol 2000; 278: G1823.
  • 21
    Ter Beek WP, Muller ES, Van Den Berg M, Meijer MJ, Biemond I, Lamers CB. Motilin receptor expression in smooth muscle, myenteric plexus, and mucosa of human inflamed and noninflamed intestine. Inflamm Bowel Dis 2008; 14: 6129.
  • 22
    Tanaka T, Kendrick ML, Zyromski NJ, Meile T, Sarr MG. Vagal innervation modulates motor pattern but not initiation of canine gastric migrating motor complex. Am J Physiol Gastrointest Liver Physiol 2001; 281: G28392.
  • 23
    Mizumoto A, Sano I, Matsunaga Y et al. Mechanism of motilin-induced contractions in isolated perfused canine stomach. Gastroenterol 1993; 105: 42532.
  • 24
    Poitras P, Trudel L, Lahaie RG, St-Pierre S. Stimulation of duodenal muscle contraction by porcine or canine motilin in the dog in vivo. Clin Invest Med 1990; 13: 116.
  • 25
    Ohshiro H, Nonaka M, Ichikawa K. Molecular identification and characterization of the dog motilin receptor. Regul Pept 2008; 146: 807.
  • 26
    He J, Irwin D, Chen R, Zhang Y. Stepwise loss of motilin and its specific receptor genes in rodents. J Mol Endocrinol 2010; 44: 3744.
  • 27
    Douady CJ, Douzery EJ. Molecular estimation of eulipotyphlan divergence times and the evolution of “Insectivora”. Mol Phylogenet Evol 2003; 28: 28596.
  • 28
    Murphy WJ, Pringle TH, Crider TA, Springer MS, Miller W. Using genomic data to unravel the root of the placental mammal phylogeny. Genome Res 2007; 17: 41321.
  • 29
    Ito H, Nishibayashi M, Kawabata K, Maeda S, Seki M, Ebukuro S. Immunohistochemical demonstration of c-fos protein in neurons of the medulla oblongata of the musk shrew (Suncus murinus) after veratrine administration. Exp Anim 2002; 51: 1925.
  • 30
    Ito H, Nishibayashi M, Kawabata K, Maeda S, Seki M, Ebukuro S. Induction of Fos protein in neurons in the medulla oblongata after motion- and X-irradiation-induced emesis in musk shrews (Suncus murinus). Auton Neurosci 2003; 107: 18.
  • 31
    Ito H, Nishibayashi M, Maeda S, Seki M, Ebukuro S. Emetic responses and neural activity in young musk shrews during the breast-feeding/weaning period: comparison between the high and low emetic response strains using a shaking stimulus. Exp Anim 2005; 54: 3017.
  • 32
    Matsuki N. Mechanisms of cytotoxic drug-induced emesis and its prevention. Yakugaku Zasshi 1996; 116: 7108.
  • 33
    Tsutsui C, Kajihara K, Yanaka T et al. House musk shrew (Suncus murinus, order: Insectivora) as a new model animal for motilin study. Peptides 2009; 30: 31829.
  • 34
    Ishida Y, Sakahara S, Tsutsui C et al. Identification of ghrelin in the house musk shrew (Suncus murinus): cDNA cloning, peptide purification and tissue distribution. Peptides 2009; 30: 98290.
  • 35
    Sakahara S, Xie ZY, Koike K et al. Physiological characteristics of gastric contractions and circadian gastric motility in the free-moving conscious house musk shrew (Suncus murinus). Am J Physiol Regul Intgr Comp Physiol 2010; 299: 110613.
  • 36
    Westfall TC. Cholinergic neurotransmission in the autonomic and somatic motor nervous system. In: Larry RS, ed. Encyclopedia of Neuroscience. Oxford: Academic Press, 2009: 82734.
  • 37
    Kitazawa T, Onodera C, Taneike T. Potentiation of motilin-induced contraction by nitric oxide synthase inhibition in the isolated chicken gastrointestinal tract. Neurogastroenterol Motil 2002; 14: 313.
  • 38
    Liang SD, Vizi ES. Positive feedback modulation of acetylcholine release from isolated rat superior cervical ganglion. J Pharmacol Exp Ther 1997; 280: 6505.
  • 39
    Ahn S, Kim S, Kim J et al. Phentolamine inhibits the pacemaker activity of mouse interstitial cells of Cajal by activating ATP-sensitive K+ channels. Arch Pharm Res 2010; 33: 47989.
  • 40
    Fontaine J, Lebrun P. Contractile effects of substance P and other tachykinins on the mouse isolated distal colon. Br J Pharmacol 1989; 96: 58390.
  • 41
    Cosola C, Albrizio M, Guaricci AC et al. Opioid agonist/antagonist effect of naloxone in modulating rabbit jejunum contractility in vitro. J Physiol Pharmacol 2006; 57: 43949.
  • 42
    Maggi CA, Patacchini R, Bartho L, Holzer P, Santicioli P. Tachykinin NK1 and NK2 receptor antagonists and atropine-resistant ascending excitatory reflex to the circular muscle of the guinea-pig ileum. Br J Pharmacol 1994; 112: 1618.
  • 43
    Amemiya N. Effects of ondansetron on electrically evoked contraction in rat stomach fundus: possible involvement of 5-HT2B receptors. Eur J Pharmacol 1997; 339: 17381.
  • 44
    Javid F, Naylor R. Characterization of the 5-hydroxytryptamine receptors mediating contraction in the intestine of Suncus murinus. Br J Pharmacol 1999; 127: 186775.
  • 45
    Chung SA, Valdez DT, Diamant NE. Adrenergic blockage does not restore the canine gastric migrating motor complex during vagal blockade. Gastroenterology 1992; 103: 14917.
  • 46
    Hall KE, El-Sharkawy TY, Diamant NE. Vagal control of migrating motor complex in the dog. Am J Physiol 1982; 243: G27684.
  • 47
    Inatomi N, Sato F, Marui S, Itoh Z, Omura S. Vagus-dependent and vagus-independent mechanisms of action of the erythromycin derivative EM574 and motilin in dogs. Jpn J Pharmacol 1996; 71: 2938.
  • 48
    Ormsbee HS, Silber DA, Hardy FEJ. Serotonin regulation of the canine migrating motor complex. J Pharmacol Exp Ther 1984; 231: 43640.
  • 49
    Haga N, Mizumoto A, Satoh M et al. Role of endogenous 5-hydroxytryptamine in the regulation of gastric contractions by motilin in dogs. Am J Physiol 1996; 270: G208.
  • 50
    Kuemmerle JF, Kellum JM. Serotonin neural receptors mediate motilin-induced motility in isolated, vascularly perfused canine jejunum. J Surg Res 1988; 45: 35762.
  • 51
    Fox-Threlkeld JET, Manaka H, Manaka Y, Cipris S, Woskowska Z, Daniel EE. Mechanism of noncholinergic excitation of canine ileal circular muscle by motilin. Peptides 1991; 12: 104750.
  • 52
    Shiba Y, Mizumoto A, Inatomi N, Haga N, Yamamoto O, Itoh Z. Stimulatory mechanism of EM523-induced contractions in postprandial stomach of conscious dogs. Gastroenterology 1995; 109: 151321.
  • 53
    Matthijs G, Peeters TL, Vantrappen G. The role of intracellular calcium stores in motilin induced contractions of the longitudinal muscle of the rabbit duodenum. Naunyn Schmiedebergs Arch Pharmacol 1989; 339: 3329.
  • 54
    Kostka P, Jang E, Watson EG, Stewart JL, Daniel EE. Nitric oxide synthase in the autonomic nervous system of canine ileum. J Pharmacol Exp Ther 1993; 264: 2349.
  • 55
    Ekblad E, Alm P, Sundler F. Distribution, origin and projections of nitric oxide synthase-containing neurons in gut and pancreas. Neuroscience 1994; 63: 23348.
  • 56
    Mizukawa K, Vincent SR, McGeer EG. Distribution of reduced nicotinamide-adenine-dinucleotide-phosphate diaphorase positive cells and fibers in the cat central nervous system. J Comp Neurol 1989; 279: 281311.
  • 57
    Panico WH, Cavuto NJ, Kallimanis G et al. Functional evidence for the presence of nitric oxide synthase in the dorsal motor nucleus of the vagus. Gastroenterology 1995; 109: 148491.
  • 58
    Sakahara S, Tsutsui C, Yanaka T et al. Establishment of a new model animal, the house musk shrew (Suncus murinus), for study of precise mechanisms of motilin-induced gastrointestinal contractions in vivo and in vitro. Abstract no. 308, Joint International Meeting of Neurogastroenterology and Motility, Chicago, IL, August 27–30, 2009.