Get access

Smooth muscle caldesmon modulates peristalsis in the wild type and non-innervated zebrafish intestine

Authors


Address for Correspondence
Michael Pack, MD, Department of Medicine, University of Pennsylvania School of Medicine, 421 Curie Blvd, Philadelphia, PA 19104, USA.
Tel: 215-573-4145; fax: 215-898-9871; e-mail: mpack@mail.med.upenn.edu

Abstract

Background  The high molecular weight isoform of the actin-binding protein Caldesmon (h-CaD) regulates smooth muscle contractile function by modulating cross-bridge cycling of myosin heads. The normal inhibitory activity of h-CaD is regulated by the enteric nervous system; however, the role of h-CaD during intestinal peristalsis has never been studied.

Methods  We identified a zebrafish paralog of the human CALD1 gene that encodes an h-CaD isoform expressed in intestinal smooth muscle. We examined the role of h-CaD during intestinal peristalsis in zebrafish larvae by knocking down the h-CaD protein using an antisense morpholino oligonucleotide. We also developed transgenic zebrafish that express inhibitory peptides derived from the h-CaD myosin and actin-binding domains, and examined their effect on peristalsis in wild-type zebrafish larvae and sox10 colourless mutant larvae that lack enteric nerves.

Key Results  Genomic analyses identified two zebrafish Caldesmon paralogs. The cald1a ortholog encoded a high molecular weight isoform generated by alternative splicing whose intestinal expression was restricted to smooth muscle. Propulsive intestinal peristalsis was increased in wild-type zebrafish larvae by h-CaD knockdown and by expression of transgenes encoding inhibitory myosin and actin-binding domain peptides. Peristalsis in the non-innervated intestine of sox10 colourless larvae was partially restored by h-CaD knockdown and expression of the myosin-binding peptide.

Conclusions & Inferences  Disruption of the normal inhibitory function of h-CaD enhances intestinal peristalsis in both wild-type zebrafish larvae and mutant larvae that lack enteric nerves, thus confirming a physiologic role for regulation of smooth muscle contraction at the actin filament.

Ancillary