SEARCH

SEARCH BY CITATION

References

  • 1
    Oppenheim JJ & Yang D. Alarmins: chemotactic activators of immune responses. Curr Opin Immunol 2005; 17: 359365.
  • 2
    Reimert CM, Fitzsimmons CM, Joseph S, et al. Eosinophil activity in Schistosoma mansoni infections in vivo and in vitro in relation to plasma cytokine profile pre- and posttreatment with praziquantel. Clin Vaccine Immunol 2006; 13: 584593.
  • 3
    Rothenberg ME. Eosinophilic gastrointestinal disorders (EGID). J Allergy Clin Immunol 2004; 113: 1128.
  • 4
    Walsh GM. Eosinophil granule proteins and their role in disease. Curr Opin Hematol 2001; 8: 2833.
  • 5
    Gessner A, Mohrs K & Mohrs M. Mast cells, basophils, and eosinophils acquire constitutive IL-4 and IL-13 transcripts during lineage differentiation that are sufficient for rapid cytokine production. J Immunol 2005; 174: 10631072.
  • 6
    Ackerman SJ, Liu L, Kwatia MA, et al. Charcot-Leyden crystal protein (galectin-10) is not a dual function galectin with lysophospholipase activity but binds a lysophospholipase inhibitor in a novel structural fashion. J Biol Chem 2002; 277: 1485914868.
  • 7
    Melo RCN, Spencer LA, Dvorak AM & Weller PF. Mechanisms of eosinophil secretion: large vesiculotubular carriers mediate transport and release of granule-derived cytokines and other proteins. J Leukoc Biol 2008; 83: 229236.
  • 8
    Ochkur SI, Jacobsen EA, Protheroe CA, et al. Coexpression of IL-5 and eotaxin-2 in mice creates an eosinophil-dependent model of respiratory inflammation with characteristics of severe asthma. J Immunol 2007; 178: 78797889.
  • 9
    Tominaga A, Takaki S, Koyama N, et al. Transgenic mice expressing a B cell growth and differentiation factor gene (interleukin 5) develop eosinophilia and autoantibody production. J Exp Med 1991; 173: 429437.
  • 10
    Yu C, Cantor AB, Yang H, et al. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J Exp Med 2002; 195: 13871395.
  • 11
    Du J, Stankiewicz MJ, Liu Y, et al. Novel combinatorial interactions of GATA-1, PU.1, and C/EBPepsilon isoforms regulate transcription of the gene encoding eosinophil granule major basic protein. J Biol Chem 2002; 277: 4348143494.
  • 12
    Mould AW, Matthaei KI, Young IG & Foster PS. Relationship between interleukin-5 and eotaxin in regulating blood and tissue eosinophilia in mice. J Clin Invest 1997; 99: 10641071.
  • 13
    Conroy DM & Williams TJ. Eotaxin and the attraction of eosinophils to the asthmatic lung. Respir Res 2001; 2: 150156.
  • 14
    Gonzalo JA, Lloyd CM, Wen D, et al. The coordinated action of CC chemokines in the lung orchestrates allergic inflammation and airway hyperresponsiveness. J Exp Med 1998; 188: 157167.
  • 15
    Mould AW, Ramsay AJ, Matthaei KI, Young IG, Rothenberg ME & Foster PS. The effect of IL-5 and eotaxin expression in the lung on eosinophil trafficking and degranulation and the induction of bronchial hyperreactivity. J Immunol 2000; 164: 21422150.
  • 16
    Swoger JM, Weiler CR & Arora AS. Eosinophilic esophagitis: is it all allergies? Mayo Clin Proc 2007; 82: 15411549.
  • 17
    Rothenberg ME, Mishra A, Brandt EB & Hogan SP. Gastrointestinal eosinophils. Immunol Rev 2001; 179: 139155.
  • 18
    Culley FJ, Brown A, Conroy DM, Sabroe I, Pritchard DI & Williams TJ. Eotaxin is specifically cleaved by hookworm metalloproteases preventing its action in vitro and in vivo. J Immunol 2000; 165: 64476453.
  • 19
    O’Bryan L, Pinkston P, Kumaraswami V, et al. Localized eosinophil degranulation mediates disease in tropical pulmonary eosinophilia. Infect Immun 2003; 71: 13371342.
  • 20
    Hamann KJ, Gleich GJ, Checkel JL, Loegering DA, McCall JW & Barker RL. In vitro killing of microfilariae of Brugia pahangi and Brugia malayi by eosinophil granule proteins. J Immunol 1990; 144: 31663173.
  • 21
    Ramalingam T, Ganley-Leal L, Porte P & Rajan TV. Impaired clearance of primary but not secondary Brugia infections in IL-5 deficient mice. Exp Parasitol 2003; 105: 131139.
  • 22
    Simons JE, Rothenberg ME & Lawrence RA. Eotaxin-1-regulated eosinophils have a critical role in innate immunity against experimental Brugia malayi infection. Eur J Immunol 2005; 35: 189197.
  • 23
    Ramalingam T, Porte P, Lee J & Rajan TV. Eosinophils, but not eosinophil peroxidase or major basic protein, are important for host protection in experimental Brugia pahangi infection. Infect Immun 2005; 73: 84428443.
  • 24
    Hall LR, Mehlotra RK, Higgins AW, Haxhiu MA & Pearlman E. An essential role for interleukin-5 and eosinophils in helminth-induced airway hyperresponsiveness. Infect Immun 1998; 66: 44254430.
  • 25
    Lee JJ, Dimina D, Macias MP, et al. Defining a link with asthma in mice congenitally deficient in eosinophils. Science 2004; 305: 17731776.
  • 26
    Humbles AA, Lloyd CM, McMillan SJ, et al. A critical role for eosinophils in allergic airways remodeling. Science 2004; 305: 17761779.
  • 27
    Abraham D, Leon O, Schnyder-Candrian S, et al. Immunoglobulin E and eosinophil-dependent protective immunity to larval Onchocerca volvulus in mice immunized with irradiated larvae. Infect Immun 2004; 72: 810817.
  • 28
    Gutierrez-Pena EJ, Knab J & Buttner DW. Immunoelectron microscopic evidence for release of eosinophil granule matrix protein onto microfilariae of Onchocerca volvulus in the skin after exposure to amocarzine. Parasitol Res 1998; 84: 607615.
  • 29
    Le Goff L, Loke P, Ali HF, Taylor DW & Allen JE. Interleukin-5 is essential for vaccine-mediated immunity but not innate resistance to a filarial parasite. Infect Immun 2000; 68: 25132517.
  • 30
    Specht S, Saeftel M, Arndt M, et al. Lack of eosinophil peroxidase or major basic protein impairs defense against murine filarial infection. Infect Immun 2006; 74: 52365243.
  • 31
    Martin C, Saeftel M, Vuong PN, et al. B-cell deficiency suppresses vaccine-induced protection against murine filariasis but does not increase the recovery rate for primary infection. Infect Immun 2001; 69: 70677073.
  • 32
    Martin C, Le Goff L, Ungeheuer MN, Vuong PN & Bain O. Drastic reduction of a filarial infection in eosinophilic interleukin-5 transgenic mice. Infect Immun 2000; 68: 36513656.
  • 33
    McLaren DJ, McKean JR, Olsson I, Venges P & Kay AB. Morphological studies on the killing of schistosomula of Schistosoma mansoni by human eosinophil and neutrophil cationic proteins in vitro. Parasite Immunol 1981; 3: 359373.
  • 34
    Hamann KJ, Barker RL, Loegering DA & Gleich GJ. Comparative toxicity of purified human eosinophil granule proteins for newborn larvae of Trichinella spiralis. J Parasitol 1987; 73: 523529.
  • 35
    Swartz JM, Dyer KD, Cheever AW, et al. Schistosoma mansoni infection in eosinophil lineage-ablated mice. Blood 2006; 108: 24202427.
  • 36
    Lawrence RA, Gray CA, Osborne J & Maizels RM. Nippostrongylus brasiliensis: cytokine responses and nematode expulsion in normal and IL-4-deficient mice. Exp Parasitol 1996; 84: 6573.
  • 37
    Knott ML, Matthaei KI, Giacomin PR, Wang H, Foster PS & Dent LA. Impaired resistance in early secondary Nippostrongylus brasiliensis infections in mice with defective eosinophilopoeisis. Int J Parasitol 2007; 37: 13671378.
  • 38
    Voehringer D, Shinkai K & Locksley RM. Type 2 immunity reflects orchestrated recruitment of cells committed to IL-4 production. Immunity 2004; 20: 267277.
  • 39
    Vallance BA, Matthaei KI, Sanovic S, Young IG & Collins SM. Interleukin-5 deficient mice exhibit impaired host defence against challenge Trichinella spiralis infections. Parasite Immunol 2000; 22: 487492.
  • 40
    Herbert DR, Lee JJ, Lee NA, Nolan TJ, Schad GA & Abraham D. Role of IL-5 in innate and adaptive immunity to larval Strongyloides stercoralis in mice. J Immunol 2000; 165: 45444551.
  • 41
    Galioto AM, Hess JA, Nolan TJ, Schad GA, Lee JJ & Abraham D. Role of eosinophils and neutrophils in innate and adaptive protective immunity to larval Strongyloides stercoralis in mice. Infect Immun 2006; 74: 57305738.
  • 42
    Padigel UM, Lee JJ, Nolan TJ, Schad GA & Abraham D. Eosinophils can function as antigen-presenting cells to induce primary and secondary immune responses to Strongyloides stercoralis. Infect Immun 2006; 74: 32323238.
  • 43
    Liu LY, Bates ME, Jarjour NN, Busse WW, Bertics PJ & Kelly EA. Generation of Th1 and Th2 chemokines by human eosinophils: evidence for a critical role of TNF-alpha. J Immunol 2007; 179: 48404848.
  • 44
    Yang D, Chen Q, Su SB, et al. Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J Exp Med 2008; 205: 7990.
  • 45
    Jacobsen EA, Ochkur SI, Pero RS, et al. Allergic pulmonary inflammation in mice is dependent on eosinophil-induced recruitment of effector T cells. J Exp Med 2008; 205: 699710.
  • 46
    Sawatzky DA, Kingham PJ, Court E, et al. Eosinophil adhesion to cholinergic nerves via ICAM-1 and VCAM-1 and associated eosinophil degranulation. Am J Physiol Lung Cell Mol Physiol 2002; 282: L1279L1288.
  • 47
    Jacoby DB, Costello RM & Fryer AD. Eosinophil recruitment to the airway nerves. J Allergy Clin Immunol 2001; 107: 211218.
  • 48
    Evans CM, Fryer AD, Jacoby DB, Gleich GJ & Costello RW. Pretreatment with antibody to eosinophil major basic protein prevents hyperresponsiveness by protecting neuronal M2 muscarinic receptors in antigen-challenged guinea pigs. J Clin Invest 1997; 100: 22542262.
  • 49
    Evans CM, Belmonte KE, Costello RW, Jacoby DB, Gleich GJ & Fryer AD. Substance P-induced airway hyperreactivity is mediated by neuronal M(2) receptor dysfunction. Am J Physiol Lung Cell Mol Physiol 2000; 279: L477L486.
  • 50
    Verbout NG, Lorton JK, Jacoby DB & Fryer AD. Atropine pretreatment enhances airway hyperreactivity in antigen-challenged guinea pigs through an eosinophil-dependent mechanism. Am J Physiol Lung Cell Mol Physiol 2007; 292: L1126L1135.
  • 51
    Kingham PJ, McLean WG, Walsh MT, Fryer AD, Gleich GJ & Costello RW. Effects of eosinophils on nerve cell morphology and development: the role of reactive oxygen species and p38 MAP kinase. Am J Physiol Lung Cell Mol Physiol 2003; 285: L915L924.
  • 52
    Hallgren J & Gurish MF. Pathways of murine mast cell development and trafficking: tracking the roots and routes of the mast cell. Immunol Rev 2007; 217: 818.
  • 53
    Okayama Y & Kawakami T. Development, migration, and survival of mast cells. Immunol Res 2006; 34: 97115.
  • 54
    Kitamura Y, Go S & Hatanaka K. Decrease of mast cells in W/Wv mice and their increase by bone marrow transplantation. Blood 1978; 52: 447452.
  • 55
    Alexander WS, Lyman SD & Wagner EF. Expression of functional c-kit receptors rescues the genetic defect of W mutant mast cells. EMBO J 1991; 10: 36833691.
  • 56
    Isersky C, Taurog JD, Poy G & Metzger H. Triggering of cultured neoplastic mast cells by antibodies to the receptor for IgE. J Immunol 1978; 121: 549558.
  • 57
    Irani AA, Schechter NM, Craig SS, DeBlois G & Schwartz LB. Two types of human mast cells that have distinct neutral protease compositions. Proc Natl Acad Sci USA 1986; 83: 44644468.
  • 58
    Ruitenberg EJ & Elgersma A. Absence of intestinal mast cell response in congenitally athymic mice during Trichinella spiralis infection. Nature 1976; 264: 258260.
  • 59
    Newlands GF, Gibson S, Knox DP, Grencis R, Wakelin D & Miller HR. Characterization and mast cell origin of a chymotrypsin-like proteinase isolated from intestines of mice infected with Trichinella spiralis. Immunology 1987; 62: 629634.
  • 60
    Miller HR, Huntley JF, Newlands GF, Mackellar A, Lammas DA & Wakelin D. Granule proteinases define mast cell heterogeneity in the serosa and the gastrointestinal mucosa of the mouse. Immunology 1988; 65: 559566.
  • 61
    Keller R, Hess MW & Riley JF. Mast cells in the skin of normal, hairless and athymic mice. Experientia 1976; 32: 171172.
  • 62
    Gurish MF, Tao H, Abonia JP, et al. Intestinal mast cell progenitors require CD49dbeta7 (alpha4beta7 integrin) for tissue-specific homing. J Exp Med 2001; 194: 12431252.
  • 63
    Abonia JP, Hallgren J, Jones T, et al. Alpha-4 integrins and VCAM-1, but not MAdCAM-1, are essential for recruitment of mast cell progenitors to the inflamed lung. Blood 2006; 108: 15881594.
  • 64
    Artis D, Humphreys NE, Potten CS, et al. Beta7 integrin-deficient mice: delayed leukocyte recruitment and attenuated protective immunity in the small intestine during enteric helminth infection. Eur J Immunol 2000; 30: 16561664.
  • 65
    Pennock JL & Grencis RK. In vivo exit of c-kit+/CD49d(hi)/beta7+ mucosal mast cell precursors from the bone marrow following infection with the intestinal nematode Trichinella spiralis. Blood 2004; 103: 26552660.
  • 66
    Romagnani P, De Paulis A, Beltrame C, et al. Tryptase-chymase double-positive human mast cells express the eotaxin receptor CCR3 and are attracted by CCR3-binding chemokines. Am J Pathol 1999; 155: 11951204.
  • 67
    Brightling CE, Ammit AJ, Kaur D, et al. The CXCL10/CXCR3 axis mediates human lung mast cell migration to asthmatic airway smooth muscle. Am J Respir Crit Care Med 2005; 171: 11031108.
  • 68
    Pennock JL & Grencis RK. The mast cell and gut nematodes: damage and defence. Chem Immunol Allergy 2006; 90: 128140.
  • 69
    Ishizuka T, Okajima F, Ishiwara M, et al. Sensitized mast cells migrate toward the antigen: a response regulated by p38 mitogen-activated protein kinase and Rho-associated coiled-coil-forming protein kinase. J Immunol 2001; 167: 22982304.
  • 70
    Jolly PS, Bektas M, Olivera A, et al. Transactivation of sphingosine-1-phosphate receptors by FcepsilonRI triggering is required for normal mast cell degranulation and chemotaxis. J Exp Med 2004; 199: 959970.
  • 71
    Asai K, Kitaura J, Kawakami Y, et al. Regulation of mast cell survival by IgE. Immunity 2001; 14: 791800.
  • 72
    Kalesnikoff J, Huber M, Lam V, et al. Monomeric IgE stimulates signaling pathways in mast cells that lead to cytokine production and cell survival. Immunity 2001; 14: 801811.
  • 73
    Kawakami T & Galli SJ. Regulation of mast-cell and basophil function and survival by IgE. Nat Rev Immunol 2002; 2: 773786.
  • 74
    Erb KJ. Helminths, allergic disorders and IgE-mediated immune responses: where do we stand? Eur J Immunol 2007; 37: 11701173.
  • 75
    Mitre E, Norwood S & Nutman TB. Saturation of immunoglobulin E (IgE) binding sites by polyclonal IgE does not explain the protective effect of helminth infections against atopy. Infect Immun 2005; 73: 41064111.
  • 76
    Pochanke V, Koller S, Dayer R, et al. Identification and characterization of a novel antigen from the nematode Nippostrongylus brasiliensis recognized by specific IgE. Eur J Immunol 2007; 37: 12751284.
  • 77
    Carlos D, Sa-Nunes A, De Paula L, et al. Histamine modulates mast cell degranulation through an indirect mechanism in a model IgE-mediated reaction. Eur J Immunol 2006; 36: 14941503.
  • 78
    Lin TJ & Befus AD. Differential regulation of mast cell function by IL-10 and stem cell factor. J Immunol 1997; 159: 40154023.
  • 79
    Yoshimoto T, Tsutsui H, Tominaga K, et al. IL-18, although antiallergic when administered with IL-12, stimulates IL-4 and histamine release by basophils. Proc Natl Acad Sci USA 1999; 96: 1396213966.
  • 80
    Supajatura V, Ushio H, Nakao A, et al. Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. J Clin Invest 2002; 109: 13511359.
  • 81
    Varadaradjalou S, Feger F, Thieblemont N, et al. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human mast cells. Eur J Immunol 2003; 33: 899906.
  • 82
    Qiao H, Andrade MV, Lisboa FA, Morgan K & Beaven MA. FcepsilonR1 and toll-like receptors mediate synergistic signals to markedly augment production of inflammatory cytokines in murine mast cells. Blood 2006; 107: 610618.
  • 83
    Selvan RS, Butterfield JH & Krangel MS. Expression of multiple chemokine genes by a human mast cell leukemia. J Biol Chem 1994; 269: 1389313898.
  • 84
    Shin K, Watts GF, Oettgen HC, et al. Mouse mast cell tryptase mMCP-6 is a critical link between adaptive and innate immunity in the chronic phase of Trichinella spiralis infection. J Immunol 2008; 180: 48854891.
  • 85
    Huang C, Friend DS, Qiu WT, et al. Induction of a selective and persistent extravasation of neutrophils into the peritoneal cavity by tryptase mouse mast cell protease 6. J Immunol 1998; 160: 19101919.
  • 86
    Malaviya R, Ikeda T, Ross E & Abraham SN. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature 1996; 381: 7780.
  • 87
    Wong GW, Foster PS, Yasuda S, et al. Biochemical and functional characterization of human transmembrane tryptase (TMT)/tryptase gamma. TMT is an exocytosed mast cell protease that induces airway hyperresponsiveness in vivo via an interleukin-13/interleukin-4 receptor alpha/signal transducer and activator of transcription (STAT) 6-dependent pathway. J Biol Chem 2002; 277: 4190641915.
  • 88
    Sayed BA & Brown MA. Mast cells as modulators of T-cell responses. Immunol Rev 2007; 217: 5364.
  • 89
    Alizadeh H & Murrell KD. The intestinal mast cell response to Trichinella spiralis infection in mast cell-deficient w/wv mice. J Parasitol 1984; 70: 767773.
  • 90
    Ha TY, Reed ND & Crowle PK. Delayed expulsion of adult Trichinella spiralis by mast cell-deficient W/Wv mice. Infect Immun 1983; 41: 445447.
  • 91
    Nawa Y, Kiyota M, Korenaga M & Kotani M. Defective protective capacity of W/Wv mice against Strongyloides ratti infection and its reconstitution with bone marrow cells. Parasite Immunol 1985; 7: 429438.
  • 92
    Ben-Smith A, Lammas DA & Behnke JM. The relative involvement of Th1 and Th2 associated immune responses in the expulsion of a primary infection of Heligmosomoides polygyrus in mice of differing response phenotype. J Helminthol 2003; 77: 133146.
  • 93
    Ford MJ, Bickle QD & Taylor MG. Immunity to Schistosoma mansoni in congenitally athymic, irradiated and mast cell-depleted rats. Parasitology 1987; 94 (Pt 2): 313326.
  • 94
    Meeusen EN, Balic A & Bowles V. Cells, cytokines and other molecules associated with rejection of gastrointestinal nematode parasites. Vet Immunol Immunopathol 2005; 108: 121125.
  • 95
    Betts CJ & Else KJ. Mast cells, eosinophils and antibody-mediated cellular cytotoxicity are not critical in resistance to Trichuris muris. Parasite Immunol 1999; 21: 4552.
  • 96
    Uber CL, Roth RL & Levy DA. Expulsion of Nippostrongylus brasiliensis by mice deficient in mast cells. Nature 1980; 287: 226228.
  • 97
    Koyama K & Ito Y. Mucosal mast cell responses are not required for protection against infection with the murine nematode parasite Trichuris muris. Parasite Immunol 2000; 22: 1320.
  • 98
    Sher A, Correa-Oliveira R, Hieny S & Hussain R. Mechanisms of protective immunity against Schistosoma mansoni infection in mice vaccinated with irradiated cercariae. IV. Analysis of the role of IgE antibodies and mast cells. J Immunol 1983; 131: 14601465.
  • 99
    Rennick D, Hunte B, Holland G & Thompson-Snipes L. Cofactors are essential for stem cell factor-dependent growth and maturation of mast cell progenitors: comparative effects of interleukin-3 (IL-3), IL-4, IL-10, and fibroblasts. Blood 1995; 85: 5765.
  • 100
    Barber KE, Crosier PS, Purdie KJ, et al. Human interleukin 3: effects on normal and leukemic cells. Growth Factors 1989; 1: 101114.
  • 101
    Knight PA, Wright SH, Lawrence CE, Paterson YY & Miller HR. Delayed expulsion of the nematode Trichinella spiralis in mice lacking the mucosal mast cell-specific granule chymase, mouse mast cell protease-1. J Exp Med 2000; 192: 18491856.
  • 102
    Helmby H & Grencis RK. Contrasting roles for IL-10 in protective immunity to different life cycle stages of intestinal nematode parasites. Eur J Immunol 2003; 33: 23822390.
  • 103
    Newlands GF, Miller HR, MacKellar A & Galli SJ. Stem cell factor contributes to intestinal mucosal mast cell hyperplasia in rats infected with Nippostrongylus brasiliensis or Trichinella spiralis, but anti-stem cell factor treatment decreases parasite egg production during N. brasiliensis infection. Blood 1995; 86: 19681976.
  • 104
    Lantz CS, Boesiger J, Song CH, et al. Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature 1998; 392: 9093.
  • 105
    Dvorak AM, Seder RA, Paul WE, Morgan ES & Galli SJ. Effects of interleukin-3 with or without the c-kit ligand, stem cell factor, on the survival and cytoplasmic granule formation of mouse basophils and mast cells in vitro. Am J Pathol 1994; 144: 160170.
  • 106
    Sasaki Y, Yoshimoto T, Maruyama H, et al. IL-18 with IL-2 protects against Strongyloides venezuelensis infection by activating mucosal mast cell-dependent type 2 innate immunity. J Exp Med 2005; 202: 607616.
  • 107
    Fallon PG, Jolin HE, Smith P, et al. IL-4 induces characteristic Th2 responses even in the combined absence of IL-5, IL-9, and IL-13. Immunity 2002; 17: 717.
  • 108
    Richard M, Grencis RK, Humphreys NE, Renauld JC & Van Snick J. Anti-IL-9 vaccination prevents worm expulsion and blood eosinophilia in Trichuris muris-infected mice. Proc Natl Acad Sci USA 2000; 97: 767772.
  • 109
    Faulkner H, Renauld JC, Van Snick J & Grencis RK. Interleukin-9 enhances resistance to the intestinal nematode Trichuris muris. Infect Immun 1998; 66: 38323840.
  • 110
    Fukao T, Yamada T, Tanabe M, et al. Selective loss of gastrointestinal mast cells and impaired immunity in PI3K-deficient mice. Nat Immunol 2002; 3: 295304.
  • 111
    Yanagida M, Fukamachi H, Ohgami K, et al. Effects of T-helper 2-type cytokines, interleukin-3 (IL-3), IL-4, IL-5, and IL-6 on the survival of cultured human mast cells. Blood 1995; 86: 37053714.
  • 112
    Nilsson G, Miettinen U, Ishizaka T, Ashman LK, Irani AM & Schwartz LB. Interleukin-4 inhibits the expression of Kit and tryptase during stem cell factor-dependent development of human mast cells from fetal liver cells. Blood 1994; 84: 15191527.
  • 113
    Lorentz A, Wilke M, Sellge G, et al. IL-4-induced priming of human intestinal mast cells for enhanced survival and Th2 cytokine generation is reversible and associated with increased activity of ERK1/2 and c-Fos. J Immunol 2005; 174: 67516756.
  • 114
    Mann-Chandler MN, Kashyap M, Wright HV, et al. IFN-gamma induces apoptosis in developing mast cells. J Immunol 2005; 175: 30003005.
  • 115
    Yanagida M, Fukamachi H, Takei M, et al. Interferon-gamma promotes the survival and Fc epsilon RI-mediated histamine release in cultured human mast cells. Immunology 1996; 89: 547552.
  • 116
    Hu ZQ, Kobayashi K, Zenda N & Shimamura T. Tumor necrosis factor-alpha- and interleukin-6-triggered mast cell development from mouse spleen cells. Blood 1997; 89: 526533.
  • 117
    Matsuda H, Kannan Y, Ushio H, et al. Nerve growth factor induces development of connective tissue-type mast cells in vitro from murine bone marrow cells. J Exp Med 1991; 174: 714.
  • 118
    Migliaccio AR, Rana RA, Sanchez M, et al. GATA-1 as a regulator of mast cell differentiation revealed by the phenotype of the GATA-1low mouse mutant. J Exp Med 2003; 197: 281296.
  • 119
    Tsai FY & Orkin SH. Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood 1997; 89: 36363643.
  • 120
    Walsh JC, DeKoter RP, Lee HJ, et al. Cooperative and antagonistic interplay between PU.1 and GATA-2 in the specification of myeloid cell fates. Immunity 2002; 17: 665676.
  • 121
    Lawrence CE, Paterson YY, Wright SH, Knight PA & Miller HR. Mouse mast cell protease-1 is required for the enteropathy induced by gastrointestinal helminth infection in the mouse. Gastroenterology 2004; 127: 155165.
  • 122
    McDermott JR, Bartram RE, Knight PA, Miller HR, Garrod DR & Grencis RK. Mast cells disrupt epithelial barrier function during enteric nematode infection. Proc Natl Acad Sci USA 2003; 100: 77617766.
  • 123
    Maruyama H, Yabu Y, Yoshida A, Nawa Y & Ohta N. A role of mast cell glycosaminoglycans for the immunological expulsion of intestinal nematode, Strongyloides venezuelensis. J Immunol 2000; 164: 37493754.
  • 124
    Amaral MM, Davio C, Ceballos A, et al. Histamine improves antigen uptake and cross-presentation by dendritic cells. J Immunol 2007; 179: 34253433.
  • 125
    McIlroy A, Caron G, Blanchard S, et al. Histamine and prostaglandin E up-regulate the production of Th2-attracting chemokines (CCL17 and CCL22) and down-regulate IFN-gamma-induced CXCL10 production by immature human dendritic cells. Immunology 2006; 117: 507516.
  • 126
    Jutel M, Watanabe T, Klunker S, et al. Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature 2001; 413: 420425.
  • 127
    Tashiro M, Kawakami Y, Abe R, et al. Increased secretion of TNF-alpha by costimulation of mast cells via CD28 and Fc epsilon RI. J Immunol 1997; 158: 23822389.
  • 128
    Frandji P, Oskeritzian C, Cacaraci F, et al. Antigen-dependent stimulation by bone marrow-derived mast cells of MHC class II-restricted T cell hybridoma. J Immunol 1993; 151: 63186328.
  • 129
    Fox CC, Jewell SD & Whitacre CC. Rat peritoneal mast cells present antigen to a PPD-specific T cell line. Cell Immunol 1994; 158: 253264.
  • 130
    Malaviya R, Twesten NJ, Ross EA, Abraham SN & Pfeifer JD. Mast cells process bacterial Ags through a phagocytic route for class I MHC presentation to T cells. J Immunol 1996; 156: 14901496.
  • 131
    Melendez AJ, Harnett MM, Pushparaj PN, et al. Inhibition of Fc epsilon RI-mediated mast cell responses by ES-62, a product of parasitic filarial nematodes. Nat Med 2007; 13: 13751381.
  • 132
    Rhoads ML, Fetterer RH, Hill DE & Urban JF Jr. Trichuris suis: a secretory chymotrypsin/elastase inhibitor with potential as an immunomodulator. Exp Parasitol 2000; 95: 3644.
  • 133
    Stoten A, Huntley J, Mistry H, et al. Nonatopic allergen-independent mast cell activation in parasitized eosinophilic athymic rats. Parasite Immunol 2005; 27: 431438.
  • 134
    Appelberg R. Neutrophils and intracellular pathogens: beyond phagocytosis and killing. Trends Microbiol 2007; 15: 8792.
  • 135
    Pham CT. Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol 2006; 6: 541550.
  • 136
    Tsuda Y, Takahashi H, Kobayashi M, Hanafusa T, Herndon DN & Suzuki F. Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity 2004; 21: 215226.
  • 137
    Ramalingam T, Rajan B, Lee J & Rajan TV. Kinetics of cellular responses to intraperitoneal Brugia pahangi infections in normal and immunodeficient mice. Infect Immun 2003; 71: 43614367.
  • 138
    Porthouse KH, Chirgwin SR, Coleman SU, Taylor HW & Klei TR. Inflammatory responses to migrating Brugia pahangi third-stage larvae. Infect Immun 2006; 74: 23662372.
  • 139
    Saeftel M, Volkmann L, Korten S, et al. Lack of interferon-gamma confers impaired neutrophil granulocyte function and imparts prolonged survival of adult filarial worms in murine filariasis. Microbes Infect 2001; 3: 203213.
  • 140
    Saeftel M, Arndt M, Specht S, Volkmann L & Hoerauf A. Synergism of gamma interferon and interleukin-5 in the control of murine filariasis. Infect Immun 2003; 71: 69786985.
  • 141
    Brattig NW, Buttner DW & Hoerauf A. Neutrophil accumulation around Onchocerca worms and chemotaxis of neutrophils are dependent on Wolbachia endobacteria. Microbes Infect 2001; 3: 439446.
  • 142
    Brigandi RA, Rotman HL, Yutanawiboonchai W, et al. Strongyloides stercoralis: role of antibody and complement in immunity to the third stage of larvae in BALB/cByJ mice. Exp Parasitol 1996; 82: 279289.
  • 143
    Herbert DR, Nolan TJ, Schad GA & Abraham D. The role of B cells in immunity against larval Strongyloides stercoralis in mice. Parasite Immunol 2002; 24: 95101.
  • 144
    Ligas JA, Kerepesi LA, Galioto AM, et al. Specificity and mechanism of immunoglobulin M (IgM)- and IgG-dependent protective immunity to larval Strongyloides stercoralis in mice. Infect Immun 2003; 71: 68356843.
  • 145
    Watanabe K, Noda K, Hamano S, et al. The crucial role of granulocytes in the early host defense against Strongyloides ratti infection in mice. Parasitol Res 2000; 86: 188193.
  • 146
    Padigel UM, Stein L, Redding K, et al. Signaling through Galphai2 protein is required for recruitment of neutrophils for antibody-mediated elimination of larval Strongyloides stercoralis in mice. J Leukoc Biol 2007; 81: 11201126.
  • 147
    Pesce JT, Liu Z, Hamed H, et al. Neutrophils clear bacteria associated with parasitic nematodes augmenting the development of an effective Th2-type response. J Immunol 2008; 180: 464474.
  • 148
    Tacchini-Cottier F, Zweifel C, Belkaid Y, et al. An immunomodulatory function for neutrophils during the induction of a CD4+ Th2 response in BALB/c mice infected with Leishmania major. J Immunol 2000; 165: 26282636.
  • 149
    Beck-Schimmer B, Schwendener R, Pasch T, Reyes L, Booy C & Schimmer RC. Alveolar macrophages regulate neutrophil recruitment in endotoxin-induced lung injury. Respir Res 2005; 6: 61.
  • 150
    DeSchoolmeester ML, Little MC, Rollins BJ & Else KJ. Absence of CC chemokine ligand 2 results in an altered Th1/Th2 cytokine balance and failure to expel Trichuris muris infection. J Immunol 2003; 170: 46934700.
  • 151
    Hirata M, Hara T, Kage M, Fukuma T & Sendo F. Neutropenia augments experimentally induced Schistosoma japonicum egg granuloma formation in CBA mice, but not in C57BL/6 mice. Parasite Immunol 2002; 24: 479488.
  • 152
    Stadnyk AW, Dollard CD & Issekutz AC. Neutrophil migration stimulates rat intestinal epithelial cell cytokine expression during helminth infection. J Leukoc Biol 2000; 68: 821827.
  • 153
    Kaifi JT, Diaconu E & Pearlman E. Distinct roles for PECAM-1, ICAM-1, and VCAM-1 in recruitment of neutrophils and eosinophils to the cornea in ocular onchocerciasis (river blindness). J Immunol 2001; 166: 67956801.
  • 154
    Gillette-Ferguson I, Daehnel K, Hise AG, et al. Toll-like receptor 2 regulates CXC chemokine production and neutrophil recruitment to the cornea in Onchocerca volvulus/Wolbachia-induced keratitis. Infect Immun 2007; 75: 59085915.
  • 155
    Hall LR, Diaconu E, Patel R & Pearlman E. CXC chemokine receptor 2 but not C-C chemokine receptor 1 expression is essential for neutrophil recruitment to the cornea in helminth-mediated keratitis (river blindness). J Immunol 2001; 166: 40354041.
  • 156
    Bazzocchi C, Comazzi S, Santoni R, Bandi C, Genchi C & Mortarino M. Wolbachia surface protein (WSP) inhibits apoptosis in human neutrophils. Parasite Immunol 2007; 29: 7379.
  • 157
    Falcone FH, Rossi AG, Sharkey R, Brown AP, Pritchard DI & Maizels RM. Ascaris suum-derived products induce human neutrophil activation via a G protein-coupled receptor that interacts with the interleukin-8 receptor pathway. Infect Immun 2001; 69: 40074018.
  • 158
    Bower MA, Constant SL & Mendez S. Necator americanus: the Na-ASP-2 protein secreted by the infective larvae induces neutrophil recruitment in vivo and in vitro. Exp Parasitol 2008; 118: 569575.
  • 159
    Ramirez BL, Howard OM, Dong HF, et al. Brugia malayi asparaginyl-transfer RNA synthetase induces chemotaxis of human leukocytes and activates G-protein-coupled receptors CXCR1 and CXCR2. J Infect Dis 2006; 193: 11641171.
  • 160
    Anbu KA & Joshi P. Identification of a 55 kDa Haemonchus contortus excretory/secretory glycoprotein as a neutrophil inhibitory factor. Parasite Immunol 2008; 30: 2330.
  • 161
    Moyle M, Foster DL, McGrath DE, et al. A hookworm glycoprotein that inhibits neutrophil function is a ligand of the integrin CD11b/CD18. J Biol Chem 1994; 269: 1000810015.
  • 162
    Ali F, Brown A, Stanssens P, Timothy LM, Soule HR & Pritchard DI. Vaccination with neutrophil inhibitory factor reduces the fecundity of the hookworm Ancylostoma ceylanicum. Parasite Immunol 2001; 23: 237249.
  • 163
    Jefferies JR, Turner RJ & Barrett J. Effect of Fasciola hepatica excretory-secretory products on the metabolic burst of sheep and human neutrophils. Int J Parasitol 1997; 27: 10251029.
  • 164
    Keir PA, Brown DM, Clouter-Baker A, Harcus YM & Proudfoot L. Inhibition of neutrophil recruitment by ES of Nippostrongylus brasiliensis. Parasite Immunol 2004; 26: 137139.
  • 165
    Smith P, Fallon RE, Mangan NE, et al. Schistosoma mansoni secretes a chemokine binding protein with antiinflammatory activity. J Exp Med 2005; 202: 13191325.
  • 166
    Zang X, Atmadja AK, Gray P, et al. The serpin secreted by Brugia malayi microfilariae, Bm-SPN-2, elicits strong, but short-lived, immune responses in mice and humans. J Immunol 2000; 165: 51615169.
  • 167
    Stanley P & Stein PE. BmSPN2, a serpin secreted by the filarial nematode Brugia malayi, does not inhibit human neutrophil proteinases but plays a noninhibitory role. Biochemistry 2003; 42: 62416248.
  • 168
    Lantz CS, Yamaguchi M, Oettgen HC, et al. IgE regulates mouse basophil Fc epsilon RI expression in vivo. J Immunol 1997; 158: 25172521.
  • 169
    Seder RA, Plaut M, Barbieri S, Urban J Jr, Finkelman FD & Paul WE. Purified Fc epsilon R+ bone marrow and splenic non-B, non-T cells are highly enriched in the capacity to produce IL-4 in response to immobilized IgE, IgG2a, or ionomycin. J Immunol 1991; 147: 903909.
  • 170
    Gibbs BF, Haas H, Falcone FH, et al. Purified human peripheral blood basophils release interleukin-13 and preformed interleukin-4 following immunological activation. Eur J Immunol 1996; 26: 24932498.
  • 171
    Mitre E & Nutman TB. Basophils, basophilia and helminth infections. Chem Immunol Allergy 2006; 90: 141156.
  • 172
    Mitre E & Nutman TB. Lack of basophilia in human parasitic infections. Am J Trop Med Hyg 2003; 69: 8791.
  • 173
    Falcone FH, Pritchard DI & Gibbs BF. Do basophils play a role in immunity against parasites? Trends Parasitol 2001; 17: 126129.
  • 174
    Hofstetter M, Fasano MB & Ottesen EA. Modulation of the host response in human schistosomiasis. IV. Parasite antigen induces release of histamine that inhibits lymphocyte responsiveness in vitro. J Immunol 1983; 130: 13761380.
  • 175
    Gonzalez-Munoz M, Garate T, Puente S, Subirats M & Moneo I. Induction of histamine release in parasitized individuals by somatic and cuticular antigens from Onchocerca volvulus. Am J Trop Med Hyg 1999; 60: 974979.
  • 176
    Genta RM, Ottesen EA, Poindexter R, et al. Specific allergic sensitization to Strongyloides antigens in human strongyloidiasis. Lab Invest 1983; 48: 633638.
  • 177
    Nielsen BW. Basophil histamine release in allergic and non-allergic patient populations. Applications of a novel washed blood histamine release assay. Dan Med Bull 1995; 42: 455472.
  • 178
    Mitre E, Taylor RT, Kubofcik J & Nutman TB. Parasite antigen-driven basophils are a major source of IL-4 in human filarial infections. J Immunol 2004; 172: 24392445.
  • 179
    King CL. Transmission intensity and human immune responses to lymphatic filariasis. Parasite Immunol 2001; 23: 363371.
  • 180
    Pritchard DI, Hooi DS, Brown A, Bockarie MJ, Caddick R & Quinnell RJ. Basophil competence during hookworm (Necator americanus) infection. Am J Trop Med Hyg 2007; 77: 860865.
  • 181
    Ogilvie BM, Askenase PW & Rose ME. Basophils and eosinophils in three strains of rats and in athymic (nude) rats following infection with the nematodes Nippostrongylus brasiliensis or Trichinella spiralis. Immunology 1980; 39: 385389.
  • 182
    Okada M, Nawa Y, Horii Y, Kitamura T & Arizono N. Development of basophils in Mongolian gerbils: formation of basophilic cell clusters in the bone marrow after Nippostrongylus brasiliensis infection. Lab Invest 1997; 76: 8997.
  • 183
    Mitchell EB & Askenase PW. Basophils in human disease. Clin Rev Allergy 1983; 1: 427448.
  • 184
    Sokol CL, Barton GM, Farr AG & Medzhitov R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat Immunol 2008; 9: 310318.
  • 185
    Reese TA, Liang HE, Tager AM, et al. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature 2007; 447: 9296.
  • 186
    Aumuller E, Schramm G, Gronow A, et al. Echinococcus multilocularis metacestode extract triggers human basophils to release interleukin-4. Parasite Immunol 2004; 26: 387395.
  • 187
    Phillips C, Coward WR, Pritchard DI & Hewitt CR. Basophils express a type 2 cytokine profile on exposure to proteases from helminths and house dust mites. J Leukoc Biol 2003; 73: 165171.
  • 188
    Schramm G, Mohrs K, Wodrich M, et al. Cutting edge: IPSE/alpha-1, a glycoprotein from Schistosoma mansoni eggs, induces IgE-dependent, antigen-independent IL-4 production by murine basophils in vivo. J Immunol 2007; 178: 60236027.
  • 189
    Gnanasekar M, Rao KV, Chen L, et al. Molecular characterization of a calcium binding translationally controlled tumor protein homologue from the filarial parasites Brugia malayi and Wuchereria bancrofti. Mol Biochem Parasitol 2002; 121: 107118.
  • 190
    Hartmann S, Sollwedel A, Hoffmann A, Sonnenburg B & Lucius R. Characterization of IgE responses in a rodent model of filariasis and the allergenic potential of filarial antigens using an in vitro assay. Parasite Immunol 2003; 25: 916.
  • 191
    Hida S, Yamasaki S, Sakamoto Y, et al. Fc receptor gamma-chain, a constitutive component of the IL-3 receptor, is required for IL-3-induced IL-4 production in basophils. Nat Immunol 2009; 10: 214222.
  • 192
    Yoshimoto T & Nakanishi K. Roles of IL-18 in basophils and mast cells. Allergol Int 2006; 55: 105113.
  • 193
    Min B, Prout M, Hu-Li J, et al. Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite. J Exp Med 2004; 200: 507517.
  • 194
    Ohnmacht C & Voehringer D. Basophil effector function and homeostasis during helminth infection. Blood 2009; 113: 28162825.
  • 195
    Khodoun MV, Orekhova T, Potter C, Morris S & Finkelman FD. Basophils initiate IL-4 production during a memory T-dependent response. J Exp Med 2004; 200: 857870.
  • 196
    Denzel A, Maus UA, Rodriguez Gomez M, et al. Basophils enhance immunological memory responses. Nat Immunol 2008; 9: 733742.
  • 197
    Tsujimura Y, Obata K, Mukai K, et al. Basophils play a pivotal role in immunoglobulin-G-mediated but not immunoglobulin-E-mediated systemic anaphylaxis. Immunity 2008; 28: 581589.
  • 198
    Mack M, Schneider MA, Moll C, et al. Identification of antigen-capturing cells as basophils. J Immunol 2005; 174: 735741.
  • 199
    Hida S, Tadachi M, Saito T & Taki S. Negative control of basophil expansion by IRF-2 critical for the regulation of Th1/Th2 balance. Blood 2005; 106: 20112017.
  • 200
    Oh K, Shen T, Le Gros G & Min B. Induction of Th2 type immunity in a mouse system reveals a novel immunoregulatory role of basophils. Blood 2007; 109: 29212927.