SEARCH

SEARCH BY CITATION

References

  • Adams, A.J. (1986) Night-interruption experiments and action spectra for dawn and dusk in relation to the photoperiodic clock of the cabbage whitefly, Aleyrodes proletella (Hemiptera: Aleyrodidae). Journal of Insect Physiology, 32, 7178.
  • Berlinger, M.J. & Ankersmit, G.W. (1976) Manipulation with the photoperiod as a method of control of Adoxophyes orana (Lepidoptera: Tortricidae). Entomologia Experimentalis et Applicata, 19, 96107.
  • Bosse, T.C. & Veerman, A. (1996) Involvement of vitamin A in the photoperiodic induction of diapause in the spider mite Tetranychus urticae is demonstrated by rearing an albino mutant on a semi-synthetic diet with and without β-carotene or vitamin A. Physiological Entomology, 21, 181192.
  • Bowen, M.F., Saunders, D.S., Bollenbacher, W.E. & Gilbert, L.I. (1984) In vitro reprogramming of the photoperiodic clock in an insect brain-retrocerebral complex. Proceedings of the National Academy of Sciences of the United States of America, 81, 58815884.
  • Bradshaw, W.E. (1972) Action spectra for photoperiodic response in a diapausing mosquito. Science, 175, 13611362.
  • Bradshaw, W.E. (1974) Photoperiodic control of development in Chaoborus americanus with special reference to photoperiodic action spectra. Biological Bulletin, 146, 1119.
  • Bradshaw, W.E. & Phillips, D.L. (1980) Photoperiodism and the photic environment of the pitcher-plant mosquito, Wyeomyia smithii. Oecologia (Berlin), 44, 311316.
  • Bünning, E. (1936) Die endogene tagesrhythmik als grundlage der photoperiodischen reaktion. Berichte der Deutschen Botanischen Gesellschaft, 54, 590607.
  • Bünning, E. (1969) Common features of photoperiodism in plants and animals. Photochemistry and Photobiology, 9, 219228.
  • Bünning, E. & Joerrens, G. (1960) Tagesperiodische antagonistische Schwankungen der Blau-violett und Gelbrot-Empfindlichkeit als Grundlage der photoperiodischen Diapause-Induktion bei Pieris brassicae. Zeitschrift fur Naturforschung, 15, 205213.
  • Busza, A., Emery-Le, M., Rosbash, M. & Emery, P. (2004) Roles of two Drosophila CRYPTOCHROME structural domains in circadian photoreceptors. Science, 304, 15031506.
  • Ceriani, M.F., Darlington, T.K., Staknis, D. et al. (1999) Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science, 285, 553556.
  • Claret, J. (1966) Recherche du centre photorecepteur lors de l’induction de la diapause chez Pieris brassicae L. Comptes Rendus de l’Académie des Sciences, 262, 14641465.
  • Claret, J. (1972) Sensibilité spectrale des chenilles de Pieris brassicae (L.) lors de l’induction photoperiodique de la diapause. Comptes Rendus de l’Académie des Sciences (Paris), Série D, 274, 17271730.
  • Claret, J. (1982) Modification du signal photopériodique par la cuticle de l'hôte pour un endoparasite. Comptes Rendus des Séances Société de Biologie et de ses Filiales (Paris), 176, 834838.
  • Claret, J. (1989) Vitamin A et induction photoperiodique ou thermopériodique de la diapause chez Pieris brassicae. Comptes Rendus de l’ Académie Sciences Série III, 308, 347352.
  • Claret, J. & Volkoff, N. (1992) Vitamin A is essential for two processes involved in the photoperiodic reaction in Pieris brassicae. Journal of Insect Physiology, 38, 569574.
  • Cymborowski, B., Lewis, R.D., Hong, S.-F. & Saunders, D.S. (1994) Circadian locomotor activity rhythms and their entrainment by light-dark cycles continues in flies (Calliphora vicina) surgically deprived of their optic lobes. Journal of Insect Physiology, 40, 501510.
  • Denlinger, D.L. (1972) Embryonic determination of pupal diapause in the flesh fly Sarcophaga crassipalpis. Journal of Insect Physiology, 17, 18151822.
  • De Wilde, J. & Bonga, H. (1958) Observations on threshold intensity and sensitivity of different wavelengths of photoperiodic response in the Colorado beetle (Leptinotarsa decemlineata Say). Entomologia Experimentalis et Applicata, 1, 301307.
  • Dickson, R.C. (1949) Factors governing the induction of diapause in the oriental fruit moth. Annals of the Entomological Society of America, 42, 511537.
  • Emery, P., So, W.V., Kaneko, M. et al. (1998) CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell, 95, 669679.
  • Ferenz, H.J. (1975) Photoperiodic and hormonal control of reproduction in male beetles, Pterostichus nigrita. Journal of Insect Physiology, 21, 331341.
  • Gao, N., von Schantz, M., Foster, R.G. & Hardie, J. (1999) The putative brain photoreceptors in the vetch aphid, Megoura viciae. Journal of Insect Physiology, 45, 10111019.
  • Geispitz, K.F. (1957) The mechanism of acceptance of light stimuli in the photoperiodic reaction of Lepidoptera larvae. Zoologicheskii zhurnal, 36, 548560 (In Russian).
  • Gelman, D.B. & Hayes, D.K. (1980) Physical and biochemical factors affecting diapause in insects, especially in the European corn borer, Ostrinia nubilalis. Physiological Entomology, 5, 367383.
  • Gnagey, A.L. & Denlinger, D.L. (1984) Photoperiodic induction of pupal diapause in the flesh fly, Sarcophaga crassipalpis: embryonic sensitivity. Journal of Comparative Physiology B, 154, 9196.
  • Goto, S.G. & Numata, H. (2009) Possible involvement of distinct photoreceptors in the photoperiodic induction of diapause in the flesh fly Sarcophaga similes. Journal of Insect Physiology, 55, 401407.
  • Goto, S.G., Shiga, S. & Numata, H. (2010) Photoperiodism in insects: perception of light and the role of clock genes. Photoperiodism: The Biological Calendar (ed. by R. J. Nelson, D. L. Denlinger and D. E. Somers), pp. 258286. Oxford University Press, New York, New York.
  • Hall, J.C. (2003) Genetics and molecular biology of rhythms in Drosophila and other insects. Advances in Genetics, 48, 1280.
  • Hardie, J. (1987) The photoperiodic control of wing development in the black bean aphid, Aphis fabae. Journal of Insect Physiology, 33, 543549.
  • Hardie, J. (2010) Photoperiodism in insects: aphid polyphenism. Photoperiodism: The Biological Calendar (ed. by R. J. Nelson, D. L. Denlinger and D. E. Somers), pp. 342363. Oxford University Press, New York, New York.
  • Hardie, J., Lees, A.D. & Young, S. (1981) Light transmission through the head capsule of an aphid, Megoura viciae. Journal of Insect Physiology, 27, 773777.
  • Hardin, P.E. (2005) The circadian timekeeping system of Drosophila. Current Biology, 15, R714R722.
  • Harris, F.A., Lloyd, E.P., Lane, H.C. & Burt, E.C. (1969) Influence of light on diapause in the boll weevil. II. Dependence of diapause response on various bands of visible radiation and a broad band of infrared radiation used to extend the photoperiod. Journal of Economic Entomology, 62, 854857.
  • Hasegawa, K. & Shimizu, I. (1987) In vivo and in vitro photoperiodic induction of diapause using isolated brain-suboesophageal ganglion complexes of the silkworm, Bombyx mori. Journal of Insect Physiology, 33, 959966.
  • Ikeno, T., Numata, H. & Goto, S.G. (2011) Photoperiodic response requires mammalian-type cryptochrome in the bean bug Riptortus pedestris. Biochemical and Biophysical Research Communications, 410, 394397.
  • Kogure, M. (1933) The influence of light and temperature on certain characters of the silk worm, Bombyx mori. Journal of the Department of Agriculture, Kyushu University, 4, 193.
  • Koštál, V. (2011) Insect photoperiodic calendar and circadian clock: independence, cooperation, or unity? Journal of Insect Physiology, 57, 538556.
  • Kriegsfeld, L.J. & Bittman, E.L. (2010) Photoperiodism and reproduction in mammals. Photoperiodism: The Biological Calendar (ed. by R.J. Nelson, D.L. Denlinger and D.E. Somers), pp. 503542. Oxford University Press, New York, New York.
  • Lees, A.D. (1953) Environmental factors controlling the evocation and termination of diapause in the fruit tree spider mite Metatetranychus ulmi Koch (Acarina: Tetranychidae). Annals of Applied Biology, 40, 449486.
  • Lees, A.D. (1964) The location of the photoperiodic receptors in the aphid Megoura viciae. Journal of Experimental Biology, 41, 119133.
  • Lees, A.D. (1971) The relevance of action spectra in the study of insect photoperiodism. Biochronometry (ed. by M. Menaker), pp. 372380. National Academy of Sciences, Washington, District of Columbia.
  • Lees, A.D. (1973) Photoperiodic time measurement in the aphid Megoura viciae. Journal of Insect Physiology, 19, 22792316.
  • Lees, A.D. (1981) Action spectra for the photoperiodic control of polymorphism in the aphid Megoura viciae. Journal of Insect Physiology, 27, 761771.
  • Lees, A.D. (1986) Some effects of temperature on the hour glass photoperiod timer in the aphid Megoura viciae. Journal of Insect Physiology, 32, 7989.
  • Lewis, R.D. & Saunders, D.S. (1987) A damped circadian oscillator model of an insect photoperiodic clock. I. Description of the model based on a feedback control system. Journal of Theoretical Biology, 128, 4759.
  • Merlin, C. & Reppert, S.M. (2010) Lepidopteran circadian clocks. From molecules to behavior. Molecular Biology and Genetics of the Lepidoptera (ed. by M. R. Goldsmith and F. Marec), pp. 137152. CRC Press, Boca Raton, Florida.
  • Morita, A. & Numata, H. (1999) Localization of the photoreceptor for photoperiodism in the stink bug, Plautia stali. Physiological Entomology, 24, 190196.
  • Müller, H.J. (1964) Uber die Wirkung Verschiedener Spektralbereichebei der photoperiodischen Induktion der Saisonformen von Euscelis plebejus Fall. (Homoptera: Jassidae). Zoologisches Jahrbucher Abteilung für Allgemeine Zoologie und Physiologie der Tiere, 70, 411426.
  • Nanda, K.K. & Hamner, K.C. (1958) Studies on the nature of the endogenous rhythm affecting photoperiodic response of Biloxi soybean. Botanical Gazette, 120, 1425.
  • Nishizuka, M., Azuma, A. & Masaki, S. (1998) Diapause response to photoperiod and temperature in Lepisma saccharina Linnaeus (Thysanura: Lepismatidae). Entomological Science, 1, 714.
  • Norris, K.H., Howell, F., Hayes, D.K. et al. (1969) The action spectrum for breaking diapause in the codling moth, Laspeyresia pomonella (L.), and the oak silkworm, Antheraea pernyi Guer. Proceedings of the National Academy of Sciences of the United States of America, 63, 11201127.
  • Numata, H. & Hidaka, T. (1983) Compound eyes as the photoperiodic receptors in the bean bug. Experientia, 39, 868869.
  • Pittendrigh, C.S. (1966) The circadian oscillation in Drosophila pseudoobscura pupae: a model for the photoperiodic clock. Zeitschrift für Pflanzenphysiologie, 54, 275307.
  • Pittendrigh, C.S. (1972) Circadian surfaces and the diversity of possible roles of circadian organization in photoperiodic induction. Proceedings of the National Academy of Sciences of the United States of America, 69, 27342737.
  • Pittendrigh, C.S. & Minis, D.H. (1964) The entrainment of circadian oscillations by light and their role as photoperiodic clocks. American Naturalist, 98, 261294.
  • Pittendrigh, C.S., Eichhorn, J.H., Minis, D.H. & Bruce, V.G. (1970) Circadian systems VI. Photoperiodic time measurement in Pectinophora gossypiella. Proceedings of the National Academy of Sciences of the United States of America, 66, 758764.
  • Rieger, D., Stanewsky, R. & Helfrich-Forster, C. (2003) Cryptochrome, compound eyes, Hofbauer-Buchner eyelets, and ocelli play different roles in the entrainment and masking pathway of the locomotor activity rhythm in the fruit fly Drosophila melanogaster. Journal of Biological Rhythms, 18, 377391.
  • Roenneberg, T., Radic, T., Gödel, M. & Merrow, M. (2010) Seasonality and photoperiodism in fungi. Photoperiodism: The Biological Calendar (ed. by R. J. Nelson, D. L. Denlinger and D. E. Somers), pp. 134163. Oxford University Press, New York, New York.
  • Rubin, E.B., Shemesh, Y., Cohen, M. et al. (2006) Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genome Research, 16, 13521365.
  • Sandrelli, F., Costa, R., Kyriacou, C.P. & Rosato, E. (2008) Comparative analysis of circadian clock genes in insects. Insect Molecular Biology, 17, 447463.
  • Saunders, D.S. (1966) Larval diapause of maternal origin-II. The effect of photoperiod and temperature on Nasonia vitripennis. Journal of Insect Physiology, 12, 569581.
  • Saunders, D.S. (1973) The photoperiodic clock in the flesh fly, Sarcophaga argyrostoma. Journal of Insect Physiology, 19, 19411954.
  • Saunders, D.S. (1974) Evidence for ‘dawn’ and ‘dusk’ oscillators in the Nasonia photoperiodic clock. Journal of Insect Physiology, 20, 7788.
  • Saunders, D.S. (1975a) Spectral sensitivity and intensity thresholds in Nasonia photoperiodic clock. Nature, 253, 732734.
  • Saunders, D.S. (1975b) ‘Skeleton’ photoperiods and the control of diapause and development in the flesh-fly, Sarcophaga argyrostoma. Journal of Comparative Physiology, 97, 97112.
  • Saunders, D.S. (1978) Internal and external coincidence and the apparent diversity of photoperiodic clocks in the insects. Journal of Comparative Physiology, 127, 197207.
  • Saunders, D.S. (1979) External coincidence and the photoinducible phase in the Sarcophaga photoperiodic clock. Journal of Comparative Physiology, 132, 179189.
  • Saunders, D.S. (1981) Insect photoperiodism: entrainment within the circadian system as a basis for time measurement. Biological Clocks in Seasonal Reproductive Cycles (ed. by B. K. Follett), pp. 6781. John Wright & Sons, U.K.
  • Saunders, D.S. (2002) Insect Clocks, 3rd edn. Elsevier, The Netherlands.
  • Saunders, D.S. (2009) Circadian rhythms and the evolution of photoperiodic timing in insects. Physiological Entomology, 34, 301308.
  • Saunders, D.S. (2010) Photoperiodism in insects: migration and diapause responses. Photoperiodism: The Biological Calendar (ed. by R. J. Nelson, D. L. Denlinger and D. E. Somers), pp. 218257. Oxford University Press, New York, New York.
  • Saunders, D.S. (2011) Unity and diversity in the insect photoperiodic mechanism. Entomological Science, 14, 235244.
  • Saunders, D.S. & Bertossa, R.C. (2011) Deciphering time measurement: the role of circadian ‘clock’ genes and formal experimentation in insect photoperiodism. Journal of Insect Physiology, 57, 557566.
  • Saunders, D.S. & Cymborowski, B. (1996) Removal of optic lobes of adult blow flies (Calliphora vicina) leaves photoperiodic induction of larval diapause intact. Journal of Insect Physiology, 42, 807811.
  • Saunders, D.S. & Lewis, R.D. (1987a) A damped circadian oscillator model of an insect photoperiodic clock. II. Simulations of the shapes of the photoperiodic response curve. Journal of Theoretical Biology, 128, 6171.
  • Saunders, D.S. & Lewis, R.D. (1987b) A damped oscillator model of an insect photoperiodic clock. III. Circadian and ‘hourglass’ responses. Journal of Theoretical Biology, 128, 7385.
  • Schurko, A.M., Mazur, D.J. & Logsdon, J.M. (2010) Inventory and phylogenomic distribution of meiotic genes in Nasonia vitripennis and among diverse arthropods. Insect Molecular Biology, 19, 165180.
  • Shiga, S. & Numata, H. (1997) The adult blow fly (Protophormia terraenovae) perceives photoperiod through the compound eyes for the induction of reproductive diapause. Journal of Comparative Physiology A, 181, 3540.
  • Shimizu, I. & Kato, M. (1984) Carotenoid functions in photoperiodic induction in the silkworm, Bombyx mori. Photobiochemistry and Photobiophysics, 7, 4752.
  • Shimizu, I., Yamakawa, Y., Shimazaki, Y. & Iwasa, T. (2001) Molecular cloning of Bombyx cerebral opsin (Boceropsin) and cellular localization of its expression in the silkworm brain. Biochemical and Biophysical Research Communications, 287, 2734.
  • Shintani, Y. & Numata, H. (2009) Different photoreceptor organs are used for photoperiodism in the larval and adult stages of the carabid beetle, Leptocarabus kumagaii. Journal of Experimental Biology, 212, 36513655.
  • Stanewsky, R., Kaneko, M., Emery, P. et al. (1998) The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell, 95, 681692.
  • Steel, C.G.H. & Lees, A.D. (1977) The role of neurosecretion in the photoperiodic control of polymorphism in the aphid Megoura viciae. Journal of Experimental Biology, 67, 117135.
  • Suzuki, T., Fukanaga, Y., Amano, H. et al. (2008) Effects of light quality and intensity on diapause induction in the two-spotted spider mite, Tetranychus urticae. Applied Entomology and Zoology, 43, 213218.
  • Takeda, M. (1978) Photoperiodic time measurement and seasonal adaptation of the south-western corn borer, Diatraea grandiosella Dyar (Lepidoptera: Pyralidae). PhD Thesis, University of Missouri.
  • Tomioka, K. & Matsumoto, A. (2010) A comparative view of insect clock systems. Cellular and Molecular Life Sciences, 67, 13971406.
  • Van Zon, A.Q., Overmeer, W.P.J. & Veerman, A. (1981) Carotenoids are functionally involved in photoperiodic induction of diapause in a predacious mite. Science, 213, 11311133.
  • Vaz Nunes, M. & Hardie, J. (1993) Circadian rhythmicity is involved in photoperiodic time measurement in the aphid Megoura viciae. Experientia, 49, 711713.
  • Vaz Nunes, M. & Saunders, D.S. (1999) Photoperiodic time measurement in insects: a review of clock models. Journal of Biological Rhythms, 14, 84104.
  • Veerman, A. (1980) Functional involvement of carotenoids in photoperiodic induction of diapause in the spider mite. Physiological Entomology, 5, 291300.
  • Veerman, A., Slagt, M.E., Alderliest, M.F.J. & Veenendaal, R.L. (1985) Photoperiodic induction of diapause in an insect is vitamin A dependent. Experientia, 41, 11941195.
  • Williams, C.M. (1963) Control of pupal diapause by the direct action of light on the insect brain. Science, 140, 386.
  • Williams, C.M. & Adkisson, P.L. (1964) Physiology of insect diapause XIV. An endocrine mechanism for the photoperiodic control of pupal diapause in the oak silkworm, Antheraea pernyi. Biological Bulletin of the Marine Laboratories, Woods Hole, 127, 511525.
  • Williams, C.M., Adkisson, P.L. & Walcott, C. (1965) Physiology of insect diapause XV. The transmission of photoperiodic signals to the brain of the oak silkworm, Antheraea pernyi. Biological Bulletin of the Marine Biological Laboratories, Woods Hole, 128, 497507.
  • Yuan, Q., Metterville, D., Briscoe, A.D. & Reppert, S.M. (2007) Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Molecular Biology and Evolution, 24, 948955.
  • Zhan, S., Merlin, C., Boone, J.L. & Reppert, S.M. (2011) The monarch butterfly genome yields insights into long-distance migration. Cell, 147, 11711185.
  • Zhang, Y. & Emery, P. (2011) Molecular and neural control of insect circadian rhythms. Insect Molecular Biology and Biochemistry (ed. by L. I. Gilbert), pp. 513551. Elsevier, The Netherlands.